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ABSTRACT 

This thesis focuses on a Software Defined Radio (SDR) designed to compress a 

wideband radio signal input for a narrowband signal output.  The design is based on a 

Field Programmable Gate Array (FPGA), which is chosen for its reprogrammability, 

flexibility, and our ability to introduce fault tolerance into the design.  Software design 

tools allowed programming to be done at a high level, thereby allowing more progress on 

the design.  This thesis focuses on one such SDR that was designed at a high level of 

abstraction.  This thesis documents an analysis of the memory and timing requirements of 

the circuit so that it may be used on resource-constrained FPGA devices.  It also explores 

the operating capabilities and limitations for this circuit under various resource-

constrained conditions and introduces algorithms for fault detection to make the circuit 

more compatible with the space environment.   
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EXECUTIVE SUMMARY 

The acquisition of satellite systems is a process that typically takes several years 

between the identification of a need to the delivery of a capability.  Operationally 

Responsive Space (ORS) is a strategy that strives to deliver space-based assets to the war 

fighter in a timely manner.  Two important areas of concern are improving the flexibility 

of satellite designs and streamlining the acquisition process.  The use of space-based 

Field Programmable Gate Arrays (FPGAs) can leverage both of these key ideas.  This 

thesis work is intended to demonstrate the feasibility of using a space-based FPGA 

system as an option for ORS.  This is accomplished by implementing a tactically relevant 

Software Defined Radio (SDR) algorithm in a configuration suitable for the space 

environment.   

A FPGA-based SDR design was developed through a previous thesis project 

conducted by a student working through the Naval Postgraduate School (NPS) 

Communications Research Laboratory (CRL).  The circuit computes the Fast Fourier 

Transform (FFT) of a sampled real-time Intermediate Frequency (IF) signal.  The 

complex FFT result is stored in temporary memory while the energy in the signal is 

analyzed.  The circuit uses operator-defined time windows and frequency Ranges of 

Interest (ROI) to organize the FFT output into time-frequency bins.  Each bin is 

compared with a user-defined minimum energy threshold.  The circuit compresses the 

FFT output by discarding all time-frequency bins that do not meet the minimum 

threshold.  Bins that pass the threshold analysis are retrieved from temporary memory 

and forwarded to the circuit’s output.  The circuit is also designed so that N, the number 

of points processed by the FFT, can be adjusted.   

The initial SDR design was created and tested at a high level of abstraction using 

System Generator software produced by Xilinx.  This software interfaces with the 

MATLAB®/Simulink® environment.  System Generator provides a library of pre-

designed Intellectual Property (IP) modules which perform functions within a Simulink® 

model.  The Simulink® model can be used to generate files required to program a FPGA 
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with the design.  Tests were conducted in the MATLAB®/Simulink® environment to 

verify functionality of the design, as documented in previous thesis work.  The design 

was tested using a configuration with 8N   on a Virtex™-4 FPGA.   

The first goal of this research was to find ways to implement the design with a 

high value of N within the resource constraints of selected FPGA models.  Although the 

initial SDR design functions in the MATLAB®/Simulink® environment, when N is 

increased from 8N   to 1024N  , the design requires more memory resources than are 

available on a Virtex™-4 FPGA.  The high level of abstraction used for the initial SDR 

design allowed the designer to bypass a detailed analysis of the circuit’s timing and 

resource requirements.  This led to several inefficiencies throughout the design that 

needed to be corrected for the circuit to function with a high value of N.   

This thesis describes an analysis of the circuit elements produced using System 

Generator to better understand the function of the design.  IP modules used to compute 

the FFT were examined by conducting a series of tests in the MATLAB®/Simulink® 

environment.  The results of these tests verified that the expected output signals are 

generated from a series of different input signals.  The Xilinx Integrated Synthesis 

Environment (ISE) Project Navigator software was used to check the FPGA resources 

required for these IP modules.  Post-synthesis timing was verified for some tests using 

ModelSim® simulation software.   

The FFT IP module used in the initial SDR design is the FFTv4.1 IP block.  The 

data sheet for this IP circuit design explains which target FPGA devices can use it.  

Eligible target devices include devices in the Virtex™-4 and Virtex™-IIP family of 

FPGAs.  The list of eligible devices excludes the Virtex™-I FPGA family, which is the 

target device for several legacy space-configured FPGA systems including the NPS 

Configurable Fault Tolerant Processor (CFTP) experiment.  For this reason, a FFT IP 

module suitable for the Virtex™-I was also examined.  A look at all IP modules in the 

System Generator library revealed that the FFTv1.0 IP block is the only one that meets 

this constraint.   
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The FFTv1.0 IP block functions differently from the FFTv4.1 IP block in several 

ways.  The FFTv4.1 IP block samples the input signal every clock cycle, while the 

FFTv1.0 IP block samples the input signal once every four clock cycles.  The FFTv4.1 IP 

block can be configured for full-rate pipeline operations so that after an initial latency, a 

valid output signal is produced on every clock cycle.  In contrast, the FFTv1.0 IP block 

produces a single burst of N valid output signals every 4N clock cycles.  Because the 

initial SDR is configured to accept the continuous streaming output of the FFTv4.1 IP 

block, the difference between these FFT IP circuits means that changes to the initial SDR 

design are required if a Virtex™-I FPGA is the desired target device.   

In addition to analyzing the FFT IP modules, the control algorithms that govern 

signal flow through the circuit were examined.  Simulations in the 

MATLAB®/Simulink® environment were used to create state transition diagrams 

explaining the behavior of the control algorithms.  The results of this analysis were used 

to create expressions for the timing expectations in terms of the size of the FFT sample 

period N, the number of FFT periods in each time window M, and the sum of the sizes of 

all user-defined ROI.  Expressions for circuit timing expectations can be used to 

determine how long information needs to be stored in memory, which determines the 

minimum memory required for the circuit.  This information can be used to create a 

circuit configuration that maximizes functionality for a given set of resource constraints.   

The second goal of this research was to make improvements to the design that 

increase downlink efficiency by taking advantage of the conjugate-symmetric property 

associated with the FFT of real signals.  Using this property, the amount of FFT output 

information required to reproduce a real input signal can be reduced in half.  Adjustments 

to the memory allocation and control algorithms were made to remove inefficiencies 

discovered though the circuit analysis and to implement savings using the FFT conjugate-

symmetric property.  The downlink algorithms were also adjusted to improve signal flow 

to an external communication system.   

The resulting circuit was configured for a Virtex™-IIP target device.  System 

Generator was used to create a Xilinx ISE project.  Xilinx ISE Project Navigator software 

was used to synthesize the design, which produced a resource estimation confirming that 



 xx

the design would fit within the resource constraints of the target device.  In similar 

fashion, the design was configured for a Virtex™-I target device using the FFTv1.0 IP 

block.  A multi-chip implementation was examined, where three Virtex™-I FPGAs 

connected in series were used.  Simulation in MATLAB®/Simulink® and resource 

estimation provided by synthesis in Xilinx ISE Project Navigator confirmed that this is a 

feasible means of implementing the SDR design.   

The final goal of this research was to add fault detection algorithms to make the 

design more suitable for the space environment.  The FFT algorithm and temporary 

storage memory were identified as the most likely locations for faults within the design 

because of the large percentage of FPGA resources dedicated to each.  The fault detection 

and correction methods of Triple Modular Redundancy (TMR) and Reduced Precision 

Redundancy (RPR) were examined.  These methods were not used because employing 

them effectively would require more resources than were available on the FPGA.   

Parseval’s Theorem was used to relate the energy of the input signal to the energy 

of the output signal in a way that involves fewer computations than the FFT.  After this 

method was implemented in the design, tests showed that the circuit was capable of 

detecting FFT errors.  Parity checking was implemented to check for errors in temporary 

storage memory.  Tests showed that the circuit would detect odd-numbered faults in each 

data word stored in memory.  The downlink format was adjusted to communicate faults 

detected in either the FFT or memory to the end user.   

The desired end state of this research was an improved version of the initial SDR 

design with increased compression and fault detection capability that can be loaded on an 

FPGA configured for space.  This objective was met.  The research demonstrated that a 

tactically relevant SDR design can be configured for use in the space environment.   
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To further develop this design toward use in actual spacecraft, the following 

additional research is required: 

 Adjust the algorithm to compensate for a condition where the user defines 
two ROIs that overlap.  This currently leads to inefficiency when 
information is transmitted twice – once for each ROI.   

 Use pipelining features available in System Generator IP block interfaces 
to reduce the clock period.  This will require adjustments to some of the 
circuit’s timing algorithms.   

 Use a larger range of input signals and user-defined configurations to test 
the design under more stressful conditions than those imposed in tests 
used for development.  This should include using a broader range of fault 
injection experiments to test the sensitivity of fault detection algorithms.   

 The user interface should be improved to prevent poor user-defined 
configuration choices and facilitate the set-up process.   

 Explore other FPGA circuits to compute the FFT.  This will provide more 
options and flexibility with ongoing circuit development.  An FFT design 
using more elementary System Generator IP blocks could be used to 
implement internal fault detection and correction algorithms.   

The ever-changing nature of threats to United States national interests generates 

an increasing demand for flexibility in space architecture.  This design is an important 

part of on-going research to meet the demand through space-based FPGA designs.   
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I. INTRODUCTION 

The acquisition of satellite systems is a process that typically takes several years 

between the identification of a need to the delivery of a capability.  Operationally 

Responsive Space (ORS) is a strategy that strives to deliver space-based assets to the war 

fighter in a timely manner.  Two important areas of concern are improving the flexibility 

of satellite designs and streamlining the acquisition process.  The use of space-based 

Field Programmable Gate Arrays (FPGAs) can leverage both of these key ideas.  [1]   

An FPGA can be reprogrammed remotely to run different algorithms.  A satellite 

with an FPGA could be reconfigured to meet a different mission on orbit, improving the 

flexibility of the asset.  This also helps to streamline the acquisition process since FPGA 

design significantly reduces the amount of time involved with integration and testing.  

Reprogramming a space-based FPGA for a new mission completely bypasses the time, 

cost, and risk involved with launching a new satellite.  [2] 

An FPGA design with potential for space applications was presented in [3].  This 

initial SDR design is a signal analysis algorithm that compresses the output of a Fast 

Fourier Transform (FFT) computation.  The design was created and tested at a high level 

of abstraction, using the Xilinx System Generator interface with the 

MATLAB®/Simulink® environment.  It analyzes the information produced by the FFT 

computation to determine if the energy in user-defined frequency Ranges of Interest 

(ROI) meets user-defined thresholds.  ROI that meet their threshold are forwarded to a 

downlink algorithm.  ROI that do not meet their threshold are discarded.  [3]     

A. OBJECTIVES 

This thesis work is intended to demonstrate the feasibility of using a space-based 

FPGA system as an option for ORS.  This is accomplished by implementing a tactically 

relevant SDR algorithm in a configuration suitable for the space environment.  The 

desired end state is an improved version of the design with increased compression and 

fault detection capability that can be loaded on an FPGA configured for space.   
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This thesis work produces an analysis of the hardware requirements associated 

with the initial SDR design.  The information gained through this analysis is used to 

make changes to the design to ensure that it makes the best use of scarce FPGA memory 

resources.  Improvements are also made to increase the efficiency of the data 

compression.   

This research explores methods for improving the algorithm’s fault detection 

capability.  Fault detection is essential because it enables ground-based systems to assess 

the validity of the data produced.  Fault detection is also necessary to determine when 

fault correction procedures are required, such as the reloading the FPGA configuration.   

B. DESIGN APPROACH 

This thesis work begins with an examination of the initial SDR design described 

in [3].  Simulations to examine the performance of the design and internal timing are 

conducted in the MATLAB®/Simulink® environment.  The System Generator interface 

is used to generate the design in Very High Speed Integrated Circuit (VHSIC) Hardware 

Description Language (VHDL) format.  Synthesis of the design from VHDL format is 

conducted using the Xilinx Integrated Synthesis Environment (ISE) Project Navigator.  

Post-synthesis resource analysis is conducted in the Xilinx ISE Project Navigator 

environment.   

Modifications to the design discussed in Section B are made incrementally.  After 

each change, the design is simulated using a baseline configuration and test set described 

in [3].  The effectiveness of each modification is evaluated based on the conformance of 

simulation results to expectations derived from the baseline test set.  Any changes to the 

tests are noted where appropriate.   

C. RELATED WORKS 

This thesis work is primarily based on the initial SDR design work described in 

[3].  Although not specifically related to this work, several organizations are developing 
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space-based FPGA designs.  One such design is the Programmable Satellite Transceiver 

presented in [4].  Wright describes other areas of research in signals analysis and the use 

of System Generator for FPGA design [3].   

The work done to provide a fault detection capability in this design is closely 

related to the work described in [5] and [6].  Snodgrass presents a new method of error 

detection and correction called Reduced Precision Redundancy (RPR) [5].  This concept 

is discussed further in [7].  Sullivan expands on the work in [5] by examining the 

application of RPR to Digital Signal Processing and spacecraft attitude control [6].  This 

research, also described in [8], explores the feasibility of RPR for elementary algorithms 

then expands the scope to multi-level algorithms.  This includes a study of using RPR to 

correct errors in the computation of the Fast Fourier Transform algorithm.   

D. THESIS ORGANIZATION 

This introductory chapter provides some background information and explains the 

objectives of the thesis work.  The design approach is described and the thesis work is 

placed in the context of other related research.   

Chapter II, Design Tools, discusses the resources that were used for the design.  

The chapter presents basic information about the FFT algorithm.  The hardware and 

software tools selected for the design are listed.  The chapter concludes with an analysis 

of the LogiCore FFTv1.0 and Xilinx FFTv4 Intellectual Property (IP) that were used to 

implement the FFT algorithm in hardware on Xilinx FPGAs.    

Chapter III, Initial SDR Design, examines a SDR design that was introduced in 

[3].  The chapter presents graphical representations of certain design elements to improve 

understanding of their functionality.  The chapter introduces an analysis of the design’s 

timing and resource requirements.  The chapter concludes by presenting generalized 

expressions for the circuit’s latency and memory requirements based on the circuit’s 

configuration and user-defined constraints.   

Chapter IV, Initial Modifications to the Original Design, presents changes to the 

initial SDR design that make it more feasible for use on a resource-constrained FPGA.  
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The conjugate symmetry property of Fourier Transforms is used to increase downlink and 

memory efficiency.  The header generation algorithm and Format Output subsystem are 

modified to improve efficiency and the ability to send signals to an external 

communications system.  Modifications are made to accommodate the FFTv1.0 IP, 

enabling use on a Virtex™-I FPGA.  The effectiveness of these changes is demonstrated 

by synthesizing the design for both a Virtex™-I FPGA and a Virtex™-IIP FPGA, 

producing an estimate of resource utilization for each.   

Chapter V, Fault Detection, introduces methods that would enable the design to 

recognize when errors occur in either FFT computing or in temporary memory storage.  

After reviewing the feasibility of various redundant algorithms, a method using 

Parseval’s theorem to compare the FFT input with the FFT output is explained.  The 

Parseval-related method is demonstrated as a resource-efficient means of detecting errors 

in the FFT computation.  Parity checking is demonstrated as a means to detect errors in 

temporary memory storage.   

Chapter VI, Conclusions discusses the significance of the information presented 

in this thesis.  The chapter also presents recommendations for future work.   
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II. DESIGN TOOLS 

Implementing and analyzing the SDR requires the use and understanding of 

certain mathematical concepts and design tools.  This chapter presents some basic 

information regarding Fourier analysis and FPGA design using the Xilinx System 

Generator tool.  It also discusses some design considerations regarding the specific 

hardware and IP circuitry used.  This chapter shows how the theory presented is 

implemented in hardware.   

A. FOURIER ANALYSIS 

The use Fourier analysis to examine the characteristics of signals is discussed in 

[3].  This section reviews the process and adds more information regarding the efficient 

implementation of Fourier analysis using FFTs, as discussed in [9].   

The Fourier Transform (FT) is used to analyze signals in the frequency domain.  

As discussed in [9], the frequency domain representation of the time domain signal ( )x t  

is   

   2( ) FT ( ) ( ) j ftX f x t x t e dt






   . (III.1) 

The frequency domain representation of the signal can be converted back to the time 

domain using the Inverse Fourier Transform (IFT),  

   2( ) IFT ( ) ( ) j ftx t X f X f e df




   . (III.2) 

As shown in Equations II.1 and II.2, the Fourier transform and inverse Fourier 

transform are dependent on an infinite set of continuous samples.  The Discrete Time 

Fourier Transform (DTFT), which provides a means for calculating the frequency 

representation of a discrete time sequence of infinite length is also discussed in [9].  The 

variable t is replaced with the variable n, indicating that the points are sampled discretely.  

The variables are related by the expression t nT  where T is the sampling period and n 
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is required to be an integer.  The sampled signal is [ ] ( )x n x nT .  The variable n is used 

in the expression  

      2 '( ') DTFT j f nX f x n x n e 






  . (III.3) 

In this expression, f’ is the frequency in units of cycles per time index.  For frequencies 

 0.5 ,0.5s sf f f  , ( ) ( ' )sX f X f f  if there is no aliasing and the sampling frequency 

is 1/sf T .  Similarly, the Inverse Discrete Time Fourier Transform (IDTFT) provides 

the discrete time sequence associated with the frequency domain representation, as shown 

in the expression  

    
1/2

2 '

1/2

IDTFT ( ') ( ') j f nx n X f X f e df




   . (III.4) 

As with the Fourier transform, the DTFT requires the analysis of a signal over all 

time.  The IDTFT requires the analysis of an infinite number of frequencies.  As 

discussed in [9], the frequency domain representation of a time domain signal can be 

estimated from a finite set of samples of length N using the discrete Fourier transform as 

shown in the expression 

       
1

2 /

0

DFT , for 0,... 1
N

j kn N

n

X k x n x n e k N






    . (III.5) 

In this expression,  'k f N .  The variable k is related to the continuous frequency f as 

shown in the expression   

 s

k
f f

N
 . (III.6) 

The inverse discrete Fourier transform reverses the process, producing the time domain 

signal of length N from the frequency domain signal defined on the set of N discrete 

frequencies, as shown in the expression   

       
1

2 /

0

1
IDFT ,for 0,..., 1

N
j kn N

k

x n X k X k e n N
N






    . (III.7) 
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To simplify these expressions the phase factor Nw  is used.  This element is also 

sometimes referred to as a “twiddle factor,” defined by the expression 

 
2 /j N

Nw e  . (III.8) 

The straightforward DFT calculation for each element of the discrete frequency 

vector  X k  requires N complex multiplication and addition operations.  The 

computation of the entire set requires N2 operations.  The FFT is a means of calculating 

the same result by breaking up the expression in a way that uses fewer operations.   

The radix-2 FFT implementation divides the DFT expression into its even and 

odd components, as shown in the equation 

      
/2 1 /2 1

2 2

0 0

2 2 1
N N

mk k mk
N N N N

m m

X k x m w w x m w
 

 

    . (III.9) 

The DFT calculation can be conducted in 2logN N  operations.  [9] 

B. COMPUTING TOOLS 

Several computational tools were used to design, test, and implement the SDR in 

hardware.  Wright discusses the FPGA design process in detail [3].  This section 

discusses the configuration of these tools, highlighting specific details critical to 

reproducing results described in the remainder of the thesis.   

1. System Generator  

As discussed in [10], System Generator is a hardware design tool produced by 

Xilinx.  It produces Intellectual Property (IP) based pre-designed circuitry in a format that 

can be inserted in a signal flow path in the MATLAB®/Simulink® environment.  This IP 

circuitry is made available through the Xilinx ISE software package.  Circuit designers 

who wish to use System Generator are encouraged to use the training package available 

with the software.  The package is labeled as a series of labs (1-7), located in the 

following path:   

\Xilinx\10.1\DSP_Tools\sysgen\examples\getting_started_training 
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The MATLAB®/Simulink® environment offers several advantages when 

designing a circuit to be used for signal analysis.  The computation tools in MATLAB® 

provide a means of easily generating input signals and interpreting output.  The circuit 

diagram is easy to construct and visualize.  Using the System Generator interface, the 

design can be compiled to any level from the Hardware Description Language (HDL) 

netlist down to the bitstream file required to program the target FPGA.   

One disadvantage of designing in System Generator is that the extra layer of 

abstraction from the IP blocks disables some of the configuration options that would 

otherwise be available.  System Generator is not a standard tool used in circuit design at 

this time, so many IP blocks are not available to be implemented in this environment.  

The way to work around these shortcomings is to use System Generator for high-level 

design and testing, and then compile the circuit to the HDL netlist level.  From there, 

other design tools can be used to configure the circuit and design interfaces to other IP 

blocks.   

2. Xilinx ISE 

The Xilinx ISE Design Suite is another tool that was used in this design to 

configure the HDL netlist produced by System Generator.  The Xilinx ISE interfaced 

with the ModelSim® simulator to confirm the results of tests that were conducted in the 

MATLAB®/Simulink® environment.   

3. Interface 

In order for the design environment to function, all software listed in this section 

must work together.  The versions of each piece of software used for this design are 

shown in Table 1.  
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Software Version Purpose 

MATLAB®/Simulink® 7.4.0 (R2007a) 
Configure the design.   

Generate input.  Interpret output.   

Xilinx ISE 

    Xilinx System Generator  
10.1 

Define the design structure and 

configure components.   

ModelSim® SE 6.3g Simulate the design  

Table 1.   Development Software.  

After installing all components, the Xilinx libraries must be compiled for 

ModelSim®.  This can be accomplished by entering the compxlib command in the 

prompt available in Xilinx ISE Project Navigator under the “TCL Shell” tab.  The 

command must be entered with the parameters shown in Figure 1.  Although divided 

between two lines for easier reading, the command is entered without a carriage return 

until the end.   

 

Figure 1.   Compiling Instructions [After 11]. 

C. TARGET DEVICES 

This design is intended for the Xilinx Virtex™ FPGA family.  This section 

presents the capabilities of three devices within that family, specifically focusing on the 

available block memory.  Memory is a critical constraint for the SDR design, which can 

be tailored for any of these devices.  The design’s capabilities and limitations change, 

depending on the target device.  This will be discussed in greater detail later in this 

document.   

Table 2 illustrates the memory capacities for three different Xilinx FPGA devices.  

The Virtex™-I device was selected as a baseline FPGA used in several legacy space 

systems.  The Virtex™-II Pro device was selected for comparison because it is the 
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earliest model that is capable of supporting the FFTv4.1 IP circuit.  The Virtex™-4 

device was selected because it was a readily available target device used for the initial 

SDR design.   

FPGA Series  Device  Block RAM 
(BRAM) 

Blocks Description  

Virtex™-I  xcv1000  16 kB  32  512-Byte Blocks  

Virtex™-II Pro  xc2vp20  1584 kB  88  18 kB Blocks  

Virtex™-4  xc4vlx25  1296 kB  72  18 kB Blocks  

Table 2.   FPGA Memory [From 12–14]. 

D. FOURIER TRANSFORM COMPUTING 

The System Generator toolbox provides several IP blocks that compute the FFT.  

Two of these blocks were selected as feasible candidates for computing the FFT for this 

design:  Fast Fourier Transform v1.0 (FFTv1.0) and Fast Fourier Transform v4.1 

(FFTv4.1).  This section discusses the advantages and disadvantages of each IP block, 

and demonstrates the functionality of each as applied to the design.   

1. Fast Fourier Transform v4.1 

Within the Virtex™ FPGA family, FFTv4.1 is designed to work with the 

Virtex™-5, Virtex™-4, and Virtex™-II Pro.  It provides the capability for pipelined, 

streaming I/O, which permits the continuous processing of data.  For this reason, the 

pipelined configuration is preferred if using the FFTv4.1 with this SDR design.  The 

FFTv4.1 can be configured to compute an FFT of any length N for 8 65536N   where 

N is a power of two [15].   
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a. Configuration Details 

 

Figure 2.   FFTv4.1 Implementation [After 16]. 

Figure 2 shows the configuration options for FFTv4.1 and displays those 

options that were selected.  The circuit produces natural order output, which costs 

additional circuit resources and delay over the bit reversed output.  Wright describes the 

input and output signals of this circuit in detail [3].   
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Figure 3.   FFTv4.1 IP Block, N = 8 [From 3]. 

The crucial details of this circuit are its input format, output format, and 

timing.  The input signal must already be separated into its real and imaginary 

components.  For the purposes of this design, all signals are assumed to be real, so the 

imaginary component is hard-wired to binary 0.  The input data must be in fixed point 

format, with the binary point at 1D   for a data word of width D.  The output of the 

circuit has a data word width of 2log 1D N   bits, which prevents overflow while 

maintaining the fixed binary point in the same location.  As discussed in [15], the input 

data must be scaled such that   1x n  .  This configuration uses scaling modules outside 

the FFTv4.1 circuit to reduce the output by a factor of 1/ N , as shown in Figure 3.     

b. Circuit Timing 

As discussed in [3] and [15], the input signal ‘start’ indicates that the 

FFTv4.1 circuit should begin accepting input.  If start is asserted at time 0t  , the FFT 

signals its readiness for input by asserting the ‘ready’ flag and xn_index begins counting 

from 0 to 1N  , incrementing on each clock.  When 4t  , the FFTv4 circuit accepts the 

first input, x[0].  At 1025t  , xn_index restarts at zero and at 1028t   the circuit accepts 

the first sample of the next set of input data.  There is no delay between the input of 

sequential data sets.   
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The signal e_done is asserted at 2160t  , indicating that the circuit will 

produce the first [ ]X k  output on the next clock cycle.  At 2161t   the signal done is 

asserted, xk_re and xk_im indicate the real and imaginary portions of [0]X  respectively, 

and xk_index begins counting from 0 to 1N  , incrementing on each clock.   

 

Figure 4.   FFTv4.1 response to DC input. 

The number of clock cycles between the last input point and the first 

output can be expressed as the latency 8L N   clock cycles.  There is no delay 

between the outputs of sequential data sets.  The timing of the FFTv4.1 circuit in 

response to a real, Direct Current (DC) signal (   0.5x n n  ) is illustrated in Figure 4.  

The output displayed has not yet been rescaled, so the desired result is shown in Equation 
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(III.10).  In this example, the start signal was only set for one clock cycle.  After 

computing the first set of N points, the circuit stops accepting input.   

 
     

 

1
0

0

0 1024 0.5 512

0    for 0

N

n

X x n e Nx n

X k k





    

 


 (III.10) 

The test was re-run with the start signal set high for 4 2 4t N   , with 

the results shown in Figure 5.  This illustrates the circuit’s ability to accept streaming 

input and produce streaming output.   

 

Figure 5.   FFTv4.1 response to streaming DC input. 
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c. Resource Utilization 

Table 3 illustrates the resources that the FFTv4.1 uses when the target 

device is the Virtex™-4 FPGA and the configuration options are selected with 1024N  , 

as shown in Figure 2.  This confirms the estimation provided in [15].  The specific FPGA 

selected for this synthesis was an xc4vlx25-10sf363 model.  The resource estimation was 

produced by the Xilinx ISE Project Navigator following synthesis.  As discussed in [17], 

two slices are used to make a single Configurable Logic Block (CLB) on an FPGA.  

Four-input Look-Up Tables (LUTs) are function generators capable of implementing any 

Boolean function of four inputs.  “Bonded IOB” indicates the number of Input/Output 

Blocks that were used.  As discussed in [18], “FIFO16/RAMB16” indicates the number 

of 18kB Random Access Memory (RAM) blocks that were used.   “DSP48” indicates an 

arithmetic primitive used for digital signal processing that consists of an 18-bit by 18-bit 

multiplier followed by a three-input adder.  As discussed in [19], “GCLK” indicates the 

number of global clock buffers that were used.   

Resource Used Available Percent Used 

Slices 4950 10752 46% 

Flip Flops 8654 21504 40% 

4 input LUTs 6606 21504 30% 

Bonded IOBs 132 240 55% 

FIFO16/RAMB16 20 72 27% 

GCLK 1 32 3% 

DSP48 48 48 100% 

Table 3.   FFTv4.1 Resource Utilization on a Virtex™-4 [From 20]. 

Table 4 illustrates the resources that the FFTv4.1 uses when the target 

device is the Virtex™-IIP FPGA and the configuration options are selected with 

1024N  , as shown in Figure 2.   This information confirms the estimation provided in 

[15].  As discussed in [21], “MULT 18X18” indicates the number of 18-bit by 18-bit 

multiplier primitives available.  As discussed in [15], the model must have at least as  
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many resources as those available in the xc2vp20 series.  The specific FPGA selected for 

this synthesis was an xc2vpx20-5ff896 model.  In this configuration, the phase factor bit 

width cannot be greater than 16.   

Resource Used Available Percent Used 

Slices 3734 9792 38% 

Flip Flops 6459 19584 32% 

4 input LUTs 4592 19584 23% 

Bonded IOBs 115 552 20% 

BRAM 16 88 18% 

MULT 18X18 22 88 25% 

GCLK 1 16 6% 

Table 4.   FFTv4.1 Resource Utilization on a Virtex™-IIP [From 20]. 

2. Fast Fourier Transform v1.0 

From the family of Virtex™ FPGA devices the FFTv1.0 is designed to work only 

on the Virtex™-I.  Although it does not provide the capability for a pipelined architecture 

with streaming output, it does provide the capability to sample continuously.  When using 

the triple memory configuration, the circuit compensates for a latency of 3N for each 

computation by sampling at one quarter of the clock rate ( / 4s cf f ).  This is true for 

any value of N.  [22]   

As discussed in [22], the FFTv1.0 is limited to 16-bit arithmetic.  As with 

FFTv4.1, the input data must be scaled such that   1x n  .  Unlike the FFTv4.0, the word 

format of the input propagates to the output.  To prevent overflow, the output is 

automatically scaled by 1/ N  [22].  The circuit operation differs slightly between the 

features offered by the Xilinx FFTv1.0 core and its realization in the System Generator 

environment.  These differences are noted in the following description where appropriate.   
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a. Configuration Details 

As shown through a review of [16] and [22], there are differences between 

the HDL implementation of the FFTv1.0 IP block and its representation in the System 

Generator environment.  Although FFTv1.0 provides the same output signals available 

from FFTv4.1, some of them are not available in the System Generator representation of 

the circuit.  The signals e_done, xn_index, xk_index, and busy are not listed as available 

outputs, as illustrated in Figure 6.  Their absence is not a major obstacle to development, 

since the signals used for this SDR design can be replicated using other features. By 

inserting one-clock delays in all other signal paths, the done signal can function as the 

e_done signal.   The indices can be replaced by counters when synchronized with the 

valid and done signals.    

 

Figure 6.   FFTv1.0 Test Circuit. 

The FFTv1.0 circuit offers fewer configuration options in the System 

Generator Graphical User Interface (GUI).   The System Generator user can only select a 

FFT length N such that  16,64, 256,1024N  , as shown in Figure 7.  This suggests that 

the IP block uses radix-4 computations because each allowable size of N is a power of 

four.  The “Memory Usage” option indicates how many N length buffers are used to 

manage the data flow within the design.  
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Figure 7.   FFTv1.0 System Generator Configuration Options [After 16]. 

An abstract model of the “Triple Memory” configuration is shown in 

Figure 8.  This architecture uses one buffer to store intermediate results during FFT 

computation.  An output buffer allows the previous computation to be stored during 

output while the current one is being processed.  An input buffer allows a third set of 

points to be sampled during the computation.     
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Figure 8.   FFTv1.0, Triple memory configuration [From 22]. 

b. Circuit Timing 

The FFTv1.0 circuit begins processing inputs when the valid signal is 

asserted.  After the processing begins, a new set of 1024 (N) input points is sampled 

every 4096 clock cycles ( 4N ).  Although not used in this design, a synchronous reset 

port is available to stop the FFT processing.  [22]   

If the valid signal is asserted at 1t  , the done signal will be asserted at 

8246t  .  When done is asserted, the output signals Xk_r and Xk_i equal the real and 

imaginary components of [0]X .  The output sequences from [0]X  to [1023]X  over 1024 

clock cycles.  During this time, the vout signal is asserted to indicate that the output is 

valid.  On the next clock after [1023]X , the vout signal goes to zero for the next 3072 

clock cycles, as the circuit computes the next FFT.  The first point of the next data set is 

output at time 12342, 4096 clock cycles after the first point of the previous set.  [22]   
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The FFTv1.0 circuit timing is demonstrated in a test run on a DC input 

signal.  The valid input signal was asserted with 0.5ReIn   at time 4t  .  No input 

signals were changed for the duration of the test.  The test results are shown in Figure 9.  

The figure illustrates that circuit produced the expected output, 

 

     
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. (III.11) 

As anticipated, after the initial delay the output is valid for the first 1024 

clock cycles out of every 4096.  The Ready For Data (RFD) signal is asserted for all 

time.  This indicates that the FFTv1.0 circuit is continuously sampling.  [22]   

After its first assertion, the valid signal indicates whether the sampled 

inputs are valid.  De-asserting the valid signal indicates that the sampled input is invalid.  

If any portion of the sampled input is accompanied by an invalid signal, the FFTv1.0 

circuit considers the entire input set to be invalid.  In the corresponding output sequence, 

0vout  .  In the ISE/ModelSim® environment invalid output is displayed as, [ ] 0X k   

for all k.  In the MATLAB®/Simulink®/System Generator environment, invalid output is 

displayed as NaN, indicating that the value cannot be computed as a number.   
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Figure 9.   FFTv1.0 Response to DC input. 

The performance of the valid input signal is demonstrated in Figure 10.  

The input is a real DC signal, where [ ] 0.5 x n n  .  The input valid signal is asserted at 

4t  , initiating FFT sampling and processing.  After one clock cycle, the input valid 

signal returns to zero.  Since the FFT detects that the input is invalid, the corresponding 

output, indicated by the done signal asserted at 8246t   is invalid, with vout = 0.  In the 

next input sequence starting at 5000t  , valid is asserted for all samples except for one at 

6144t  .  Because one input point was invalid, the corresponding output, starting at 

12342t   is invalid.  The input valid signal is asserted for the remainder of the test, and 

the first valid output is produced at 16438t  .   
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Figure 10.   Performance of the valid signal. 

c. Resource Utilization 

Using the Triple Memory configuration discussed in this section, the 

FFTv1.0 circuit uses the resources shown in Table 5. The specific FPGA selected for this 

synthesis was an xcv1000-4bg560 model.  The resource estimation was produced by the 

Xilinx ISE Project Navigator following synthesis.  The FFTv1.0 IP was configured with 

1024N  , as shown in Figure 7.   
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Resource Used Available Percent Used 

Slices 1289 12288 10% 

Flip Flops 2577 24576 10% 

4 input LUTs 2245 24576 9% 

Bonded IOBs 70 404 17% 

BRAM 24 32 75% 

GCLK 1 4 25% 

Table 5.   FFTv1.0 Resource Utilization on a Virtex™-I [From 20]. 

d. Circuit Limitations 

Designers using the FFTv1.0 circuit need to be conscious of the 

limitations on precision imposed by the combination of 16-bit computations, propagating 

the input signal format to the output, and the scaling of the output signal by 1/ N .   

If a maximum-precision output is desired, its format must be a 16-bit 

number with the radix point at 15.  Using this format, the smallest detectable output is  

  15 5
2 10

0.000000000000001 1/ 2 3.0513 10   . (III.12) 

The input must be in the same format, so the smallest possible input signal is the same 

size if the full dynamic range of the input signal is used.  Suppose an impulse signal is 

input to the FFTv1.0 circuit, where  
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2 10[ ] 0.000001 2 0.0156 for 0

[ ] 0    for 1 1

x n n

x n n N

   
  

. (III.13) 

In this case, the corresponding output should be 
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   

 

1 1
2 / 2 /

0 1

5
210

1 1
0.0156 0

[ ] 0.0156
1.5234 10 0.0000000000000001

1024

N N
j kn N o j kn N

n n

X k
x n e e e

N N N

X k

N

 
 

 

 



 
    

 

   

 
. (III.14) 

This is smaller than the minimum detectable output signal, so the output would appear to 

be [ ] 0X k k  .   

In this configuration, if it is desired that all signals propagate through the 

circuit to produce valid output, then the input signal is limited to 6 bits with 5 bits 

representing the fraction.  In this case, the smallest possible input value is 52 0.313  .  

The user may decide to use a larger range than this, but must be aware of the fact that not 

all signals will propagate through the circuit to produce a valid output.   

E. CONCLUSION 

This chapter discussed the computing resources required to implement the SDR 

design.  The mathematical basis for the FFT was discussed.  Software tools were 

introduced, as well as target FPGA devices.  The chapter demonstrated the function of IP 

circuitry available to compute the FFT.  The next chapter discusses the memory 

requirements and timing details of the initial SDR design.  
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III. INITIAL SDR DESIGN 

This chapter reviews and augments the work documented in [3].  The referenced 

NPS thesis illustrates the performance of an SDR compression algorithm under various 

test scenarios.  These demonstrations focused on the circuit’s output as a function of the 

input.  While this information is useful to the circuit’s end user, it lacks a level of detail 

needed for future development of the circuit.  This chapter traces the design’s signal path, 

highlighting signals and configurations critical to the circuit’s function.  It also illustrates 

the intermediate responses of the system subcomponents as the signal propagates from 

the input to the output.   

Although some versions of the original design were tested in hardware, a detailed 

resource analysis was not conducted.  The most critical resource constraint for the SDR 

compression algorithm is the amount of memory available on the target FPGA.  This 

chapter discusses the resource requirements of the original design.  It also discusses the 

capabilities and limitations of the circuit, based on the resources available using various 

configurations and target devices.  The chapter concludes with some general equations 

describing the circuit’s overall performance and resource requirements.  These equations 

are useful tools in configuring the circuit for optimal performance.   

A. OVERALL FUNCTIONALITY 

The initial SDR design calculates the FFT of a sampled, pre-demodulated, 

Intermediate Frequency (IF) signal.  A conceptual model of the system is shown in 

Figure 11.  The output FFT points are stored in temporary memory while the Bin Energy 

Calculation subsystem sorts the signal into time and frequency bins.  This subsystem 

computes the amount of energy in each bin [3].   
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Figure 11.   Conceptual SDR Model [From 3]. 

The Bin Threshold Analysis subsystem determines if the energy in each bin 

exceeds a user-defined threshold.  The Data Management subsystem pulls FFT points 

from memory that correspond to bins exceeding the minimum energy threshold and adds 

header information to enable the reconstruction of the signal after downlink [3].  

B. DESIGN SETUP 

This chapter focuses on all circuitry after the calculation of the FFT.  The majority 

of the flow path is linear, although a limited number of signals loop back, providing input 

to algorithms earlier in the flow path.  No internal signals govern the function of the FFT 

circuit.  The overall circuit design is displayed in Figure 12.  This shows that the 

compression portion of the circuit reacts to stimuli from the FFT circuit.  The FFT circuit 

only reacts to stimuli external to the circuit.   
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Figure 12.   Overall Circuit Design [From 3]. 

The specific configuration discussed in this chapter uses the FFTv4.1 IP circuit.  

The FFT circuit computes the 1024-point FFT of a real signal.  The data word format will 

be referred to using the notation BitWidth_DecimalPoint.  The input signal had a width of 

24 bits, with the decimal point to the left of bit 23.  In other words, the data word format 

was 24_23.  As discussed in Section 2.D.1, the output bit format is calculated to be  

 2log 1024 34 _ 23output inputBitWidth BitWidth   . (IV.1) 

In the initial SDR design, the output of the FFT is then reformatted, scaling the signal by 

a factor of 102 and prepending a zero to the most significant bit.  The signal that enters the 

Bin Energy Calculation block has a data word format of 35_33.   

 The start signal for the FFTv4.1 circuit is set at time t = 1.  The first input point 

[0]x  is sampled at 1t   and delayed four clock cycles, entering the FFT circuit at 5t  .  

After the initial latency discussed in Section 2.D.1 and a 48 clock delay, the first output 

point (0)X  reaches the Bin Energy Calculation block at time 2209t  .   
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C. BIN ENERGY CALCULATION 

1. Time Windowing Subsystem 

The function of the Time Windowing subsystem is to calculate the amount of 

energy in each FFT output point, then sum the amount of energy in each point over a time 

period determined by the user.  The time period must be in integer multiples of the FFT 

period.  The signal M is the number of FFT periods considered for each time window.  

[3]   

a. Signal Flow 

As discussed in [3], the energy in each point is calculated using the 

expression 

 2 2Energy( ) Re( ) Im( )k k k  . (IV.2) 

This is implemented using two multipliers and one adder, as shown in Figure 13.   

 

Figure 13.   Circuit to Calculate Energy(k) [From 3]. 

System Generator provides a circuit designer with the option to set the output precision 

and latency of the addition and timing blocks.  By double-clicking on the block, the 

designer can force the output data word into a desired format using a graphical interface 

shown in Figure 14.  The latency can also be adjusted in terms of clock cycles.   



 29

 

Figure 14.   Multiplier IP Configuration [From 16]. 

Increasing the latency allows the compiler to implement the specified 

adder or multiplier circuit using the pipeline with the number of stages specified in the 

latency block.  As discussed in [23], pipelining breaks up the circuit so that the longest 

delay path between registers is reduced.  This allows the overall clock speed to be 

increased, which increases the sampling rate, increasing the highest analog frequency that 

the FFT can measure.  No pipelining was used for any addition or multiplication blocks 

in the initial SDR design.   

In the initial SDR design, the output precision for this energy calculation 

was set to “Full.”  In this configuration, bits are added to the output data word to preclude 

the possibility of overflow.  The number of bits is doubled in each multiplier, 
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transforming the 35_33 input signal into an output signal with data word format 70_66.  

The full precision adder appends one bit to the signal, resulting in a data word format of 

71_66.   

The flow path for the time window energy calculation is shown in Figure 

15.  As discussed in [3], the energy signal is stored in a First-In, First-Out (FIFO) buffer.  

As successive sets of N output points are received from the energy calculation circuit, 

each new value is added to the corresponding point’s energy accumulation from the 

previous time periods.  The sum is written back into the FIFO buffer provided the number 

of FFTs processed is less than M, the number of FFT periods in a time window.   

 

Figure 15.   Time Window Energy Calculation [From 3]. 

The adder used for this circuit is configured with a latency of zero clock 

cycles, indicating that pipelining is not used.  The output precision cannot be set to “Full” 

because the circuit’s input is a function of its output.  When System Generator attempts to 

compile the circuit in this configuration, it generates an error because it assumes size of 

the adder’s output data word would grow without bound.  In the initial SDR design, the 

adder’s output precision was fixed at 54_42.   
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b. Timing Analysis 

As discussed earlier, in the initial SDR design the latency of the adder and 

multiplier circuits is zero.  The amount of time spent processing FFT points stored in the 

FIFO is dependent on the value of M.  The circuit must wait until  1N M   points have 

been collected, with the summed energy vector calculated and stored in the FIFO.   

When the Time Windowing subsystem receives the first point of the final 

FFT period within the window, the output of the adder can be forwarded to the next SDR 

subsystem.   The circuit has an additional two-clock delay between the time an input is 

received and the time it is available for output, which accounts for the inherent delay 

associated with the FIFO buffer.  For a case where 3M  , the first point of the third FFT 

period would enter the Time Windowing subsystem at time, 2209 2 4257t N   .  The 

first output point, indicating 
2 2 2

0 1 2(0) (0) (0)X X X   leaves the Time Windowing 

subsystem at time, 4257 2 4259t    .  The last output point, indicating the sum 

2 2 2

0 1 2(1023) (1023) (1023)X X X   is forwarded to the Frequency Windowing 

subsystem at time, 4259 1023 5282t    . 

The signal flow through this subsystem is managed by a Finite State 

Machine (FSM) implemented in M-Code by the pwr_time algorithm.  The circuit’s input 

and output signals are described in [3].  In addition, the circuit uses internal variables 

fft_count, i_cnt, and delay_fl to control state transitions and output timing.  For this 

subsystem, the signal p_cnt is used to indicate the signal xn_index, from the FFT circuit.  

The signal prep is used to indicate the edone flag from the FFT circuit.   
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Figure 16.   State Transition Diagram for pwr_time Algorithm. 

A state transition diagram for the pwr_time algorithm is displayed in 

Figure 16.  The state transitions and output for the pwr_time FSM are displayed in Moore 

format, with the output solely a function of the current state [23].  In truth, the FSM is in 

implemented in Mealy format, meaning that the output is a function of both the current 

state and the inputs [23].  When implemented in hardware, the internal variables i_cnt, 

and delay_fl would function as inputs to the FSM, changing the way each state produces 

output.   

The affect of internal signals on the output for a case where 3 M  is 

illustrated in Figure 17.  The multiplexer which controls the input to the FIFO buffer is 

governed by the mem_mux signal.  The FIFO input is either from the FFT circuit, 

indicated by “FFT,” or from the adder circuit, indicated by “Add.”  The multiplexer 

which controls the input to the adder is governed by the add_mux signal.  The adder input 



 33

is either directly from the FFT circuit, indicated by “FFT,” from the FFT circuit with a 

delay of one, indicated by “Del,” or simply zero.  The first two clock cycles of states two 

and three have different output, disabling the ability to write to the FIFO buffer until the 

adder output is ready.   

Source Signal

Clock Clock 2208 2209 2210 2211 … 3230 3231 3232 3233 3234 3235 … 4254 4255 4256

FFT p_cnt 0 1 2 … 1021 1022 1023 0 1 2 … 1021 1022 1023

FFT prep 1 1 1

Internal state 0 1 1 1 … 1 1 1 2 2 2 … 2 2 2

Internal i_cnt 0 0 0 0 … 0 0 0 0 1 2 … 1021 1022 1023

Internal delay_fl 0 0 0 0 … 0 0 0 1 2 2 … 2 2 2

Internal fft_count 0 1 1 1 … 1 1 1 2 2 2 … 2 2 2

pwr_time we 0 1 1 1 … 1 1 1 0 0 1 … 1 1 1

pwr_time re 0 0 0 0 … 0 0 0 1 1 1 … 1 1 1

pwr_time mem_mux FFT FFT FFT FFT … FFT FFT FFT FFT FFT Add … Add Add Add

pwr_time add_mux FFT FFT FFT FFT … FFT FFT FFT 0 Del Del … Del Del Del

FIFO in (k) X 0 1 2 … 1021 1022 1023 X X 0 … 1019 1020 1021

FIFO out (k) 0 0 0 0 … 0 0 0 0 0 1 … 1020 1021 1022

Adder In (k) 0 1 2 … 1021 1022 1023 0 0 1 … 1020 1021 1022

Adder Out 0 1 2 … 1021 1022 1023 0 0 1 … 1020 1021 1022

pwr_time (k) 0 0 0 0 … 0 0 0 0 0 0 … 0 0 0

pwr_time time_st 0 0 0 0 … 0 0 0 0 0 0 … 0 0 0

pwr_time time_end 0 0 0 0 … 0 0 0 0 0 0 … 0 0 0

pwr_time time_val 0 0 0 0 … 0 0 0 0 0 0 … 0 0 0

pwr_time win_cnt 1 1 1 1 … 1 1 1 1 1 1 … 1 1 1

Source Signal

Clock Clock 4257 4258 4259 4260 … 5278 5279 … 5280 5281 5282 5283

FFT p_cnt 0 1 2 3 … 1021 1022 … 1023 0 1 2

FFT prep 1

Internal state 2 2 3 3 … 3 3 … 3 3 3 4

Internal i_cnt 1024 0 1 2 … 1020 1021 … 1022 1023 1024 1

Internal delay_fl 2 2 0 0 … 0 0 … 0 0 0 0

Internal fft_count 2 2 3 3 … 3 3 … 3 3 3 1

pwr_time we 1 1 0 0 … 0 0 … 0 1 1 1

pwr_time re 1 1 1 1 … 1 1 … 1 1 0 0

pwr_time mem_mux Add Add FFT FFT … FFT FFT … FFT FFT FFT FFT

pwr_time add_mux Del Del Del Del … Del Del … Del Del Del FFT

FIFO in (k) 1022 1023 X X … X X … X 0 1 2

FIFO out (k) 1023 0 1 2 … 1020 1021 … 1022 1023 0 0

Adder In (k) 1023 0 1 2 … 1020 1021 … 1022 1023 0 1

Adder Out 1023 0 1 2 … 1020 1021 … 1022 1023 0 1

pwr_time (k) 0 0 0 1 … 1019 1020 … 1021 1022 1023 0

pwr_time time_st 0 0 1 0 … 0 0 … 0 0 0 0

pwr_time time_end 0 0 0 0 … 0 0 … 0 0 1 0

pwr_time time_val 0 0 1 1 … 1 1 … 1 1 1 0

pwr_time win_cnt 1 1 1 1 … 1 1 … 1 1 1 2

Sum (Time 1+Time2+Time3)

Time Window 3

Sum (Time 1+Time2)

Time Window 1 Time Window 2

 

Figure 17.   Timing of Output for pwr_time Algorithm, 1024N  , 3M  . 

The FSM is designed for continuous, streaming input.  This is the reason 

for State Four, which permits processing of the next time window while the last two 
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points from the previous window are output.  After State One, all transitions are based on 

the internal variables i_cnt and fft_count.  Regardless of the input received in successive 

FFT sets, the algorithm continues processing until it reaches the end of State Three.  If 

the expected prep flag is not detected at this point, the algorithm returns to State Zero.  

Additionally the time_st and time_end flags are only set on the first and last clocks of 

State Three, respectively.   

c. Memory Analysis 

The biggest resource constraint for the Time Windowing subsystem is the 

amount of memory required for the FIFO buffer.  The memory required is a function of 

the bit width of the data word and the depth of the memory.  System Generator selects the 

bit width of memory based on the bit width of the input.  The depth of memory, which 

indicates the maximum number of data words that can be stored, can be adjusted by the 

circuit designer using a pull-down menu, where  

 2   for 4,5,...,16nDepth n  . (IV.3) 

After the values from the first N points are stored, the FIFO buffer reads a value on every 

clock cycle.  Therefore, the FIFO buffer only requires enough depth to contain N values.  

The initial SDR design sets the FIFO depth to “4K.”  The corresponding memory 

requirement is  

 
Memory = Bit Width  Depth

Memory = 71 bits  4K = 284 Kbit = 35.5 KB




. (IV.4) 

2. Frequency Windowing Subsystem 

As discussed in [3], the Frequency Windowing subsystem sorts the accumulated 

energy vector passed from the Time Windowing subsystem into bins representing 

frequencies of interest.  At this point, elements of the energy vector that are not within the 

range of a frequency bin are not forwarded for further analysis.  The subsystem uses an 

accumulator to compute the amount of energy in each frequency bin.   
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a. Timing Analysis 

The signals in this subsystem are controlled by two finite state machines.  

As each element of the energy vector is output from the Time Windowing subsystem, it is 

stored sequentially in a Dual Port RAM.  This process is controlled by the we_time_win 

algorithm.  When the last point is written, the algorithm sets the fft_e flag.  This signals 

the re_freq_win algorithm to read the appropriate Ranges of Interest (ROIs) from 

memory. State transition diagrams for each algorithm are shown in Figure 18.   

        

Figure 18.   State Transition Diagrams for Frequency Analysis Subsystem. 

The rng_s and rng_e signals align with the start and end of each ROI, 

respectively.  They are generated along with the addresses of the start and end points and 

then delayed by one clock to align with the start and end points as they are available from 

memory.  These signals are used to control a series of accumulators, which add each 

sequential input to the value stored on the last clock cycle.  The value in the accumulator 

is reset at the end of each ROI.  The bin_fl signal is set for one clock cycle at the end of 

the last ROI.  This signal is delayed by two clock signals to align with the data signal as it 

leaves the accumulators and is renamed win_fl.   
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From this point forward, the timing of the circuit is dependent on the ROI 

selected and the input signal.  To demonstrate the circuit’s timing, a test was run with a 

real input signal, where 

     1
[ ] sin 2 3 /1024 sin 2 5 /1024  for 0...3095

4
x n n n n      . (IV.5) 

As expected from the DFT calculation, the corresponding output from the FFT subsystem 

is 

 

Re( ) 0

Im( ) 0.128 for 3,5

         0.128 for 1019,1022

k k

k k

k

 
  
 

. (IV.6) 

The energy vector output from the Time Windowing Subsystem, with 3M   is  

 

2
2 128

3 0 0.047 if 3,5,1019,  or 1022
( ) 1024

0 otherwise

k
E k

              



. (IV.7) 

The ROIs used for this test were 0...7k  and 1019...1023k  .  The expected energy in 

each frequency bin is 2 0.047 0.094  .  For convenience, ( )F x  is defined as the total 

number of FFT points in ROI( )x .  In this example there are two ROIs, where  (0) 8F   

and (1) 5F  .   

A timing diagram for the test is shown in Figure 19.   The first ROI point 

is read from memory 1 N  clock cycles after the first energy point is written.  In this 

example, the first energy point is written at 4259t   and the first ROI point is read from 

memory at  5284t  .  The sum of energy in each bin is available after every element of 

the energy vector is entered into memory, the entire ROI has been read, and the signal has 

left the accumulator.  This sum is aligned with the valid signal, which is the same as the 

rng_e signal delayed by two clock cycles.  The time each ROI energy sum is available 

can be expressed as 

     


Read Delay
Time Windowing Delay Write Delay

0

 FFT delay 1 2 1 ( )
y

x

t ROI y M N N F x


       



. (IV.8) 
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Figure 19.   Timing of Frequency Windowing Subsystem. 
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For the two ROI in this test, ROI(0) and ROI(1), the time that their energy is available is 

expressed as 

 
  
  
0 2209 2 1024 2 1024 1 8 5292

1 2209 2 1024 2 1024 1 8 5 5297

t ROI

t ROI

       

        




. (IV.9) 

This corresponds with the test results displayed in Figure 19.  For convenience, the time 

of the last bin energy calculation in a set will be annotated as tROI(final).   

b. Resource Analysis 

Similar to the FIFO buffer in the Time Windowing subsystem, the size of 

the Dual Port RAM used in this subsystem is dependent on the bit width of the data word 

and the depth of the memory.  As discussed in the Time Windowing section, the output 

from the adder is in 52_42 format.  This format propagates to the input of the Dual Port 

RAM, setting the bit width for the block at 52.  As discussed in [24], the maximum bit 

width allowable is dependent on the depth of memory and the device. 

The depth of the Dual Port RAM block is entered using a fill-in block in 

the System Generator user interface.  For the initial SDR design, this value was 152 .  The 

basis for this was most likely determined by the expression 

 
10 2 3 15

Depth ( 1) _

Depth 2 2 2 2

N M mem col   

   
. (IV.10) 

 

The corresponding memory requirement is    

 
15

Memory = Bit Width  Depth

Memory = 52 2 1664 Kbit 208 KB



  
. (IV.11) 

This configuration of the initial SDR design was only tested at a high level 

of abstraction in the MATLAB®/Simulink® environment to verify that the algorithm 

would function as designed.  The algorithm cannot run on a device in its current format 

because this memory requirement far exceeds the capacities of the target devices.  The 

expression in Equation (IV.11) does not represent the minimum memory requirement, so 

the memory can be used much more efficiently with some adjustments.   
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Since the Dual-Port RAM only stores one energy vector of length N for 

every M FFT periods, the factor ( 1)M   in Equation (IV.10) can be replaced with (1).  

The re_freq_win has no provision for reading any vector other than the one just written to 

memory.  In a worst-case scenario with continuous, streaming FFT output and 1M  , the 

Dual-Port RAM would require enough depth to write the next vector of N elements while 

frequency bins from the last one are being read.  Assuming ( )F x MN , the maximum 

required depth for a 1024-point FFT is 

 10 11Depth 2 2 2 2N    . (IV.12) 

As discussed in [3], this can be accomplished by changing the value in the Dual-Port 

RAM System Generator interface, setting _ 2mem col  and adjusting the bit width of the 

addr_hi signal to one.  The new memory requirement is  

 
11

Memory = Bit Width  Depth

Memory = 52 2 104 Kbit 13 KB



  
 (IV.13) 

The assumption that ( )F x N  is not necessary for this portion of the 

circuit.  Based on the timing, if ( )F x NM , the circuit would still function as long as 

the memory is modified so that Depth  NM . Setting limits on ( )F x is necessary to 

ensure that the circuit works with the minimum required memory.  Additionally, the 

( )F x N  restriction is required later in the signal flow path.  This will be revisited 

later in the chapter.   

D. BIN THRESHOLD ANALYSIS AND DATA MANAGEMENT 

The Bin Threshold Analysis subsystem simply compares the total energy in each 

bin to the user-defined threshold.  If the energy in the bin exceeds the threshold, the ROI 

index is written to a FIFO buffer in the Temporary Data Management subsystem.  At the 

end of the bin set, the window number and the number of bins that passed are also stored 

in FIFO buffers.  These buffers are duplicated in the Header Generation subsystem.   
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1. Timing Analysis 

As each of the bins is analyzed, the wind_anal algorithm sets the wE_rng signal, 

which permits the ROI index to be written to memory.  At tROI(final), the algorithm sets the 

wE_qty signal, permitting the window number and number of passed bins to be written to 

memory.  There is no clock delay between the accumulator output from the previous 

subsystem and memory.   

The wE_qty also acts as a flag, for the hdr_data_mgt algorithm.  If the wE_qty 

flag is asserted the algorithm checks to ensure that a previous window is not being read 

from memory.  If the tmp_busy flag is not asserted, the algorithm sets the hdr_fl flag.  

After a two-clock delay, this cues the out_hdr algorithm to begin generating a header for 

the downlink data frame.   

A state transition diagram for the out_hdr algorithm is shown in Figure 20.  State 

Zero outputs the window number as the first part of the header before transitioning to the 

next state.  In State One, the algorithm outputs the number of bins that passed the bin 

threshold analysis, then transitions to State Two.  In State Two, the algorithm outputs the 

status of the pri flag, then transitions to State Three.  The length of the final part of the 

output header is dependent on the number of bins that passed the bin threshold analysis.  

The algorithm remains in State Three, adding a bin number to the header on each clock 

cycle, until all bins that passed the bin threshold analysis are added to the header.   When 

all of the appropriate bins have been added to the header, the algorithm sets the tmp_fl 

signal and returns to State Zero.  The tmp_fl signal cues the re_tmp algorithm to read FFT 

points from temporary memory, sending them to the Output Format subsystem.   
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Figure 20.   State Transition Diagram for out_hdr Algorithm 

For convenience, the time the first element of the header is sent to the Output 

Format subsystem will be annotated as thdr.  The time that the first FFT point is read from 

temporary memory will be annotated as ttmp.  The delay between tROI(final) and thdr is two 

clock cycles.  The delay between tROI(final) and ttmp is expressed as 

 
Header Elements

( ) 2 + 3 + # Passed Bins 2tmp ROI finalt t  


. (IV.14) 

The additional two-clock delay at the end of the expression indicates the time required to 

read the ROI from temporary memory then read the first FFT point from temporary 

memory.  The algorithm reads ( )MF x  points from temporary memory.  After each ROI, 

there is a one-clock delay so the algorithm can read the next ROI from temporary 

memory.   
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2. Resource Analysis 

The only memory requirements for these subsystems are the two sets of three 

FIFO buffers used to store ROI information.    The initial SDR design sets the depth of 

these buffers to 16.  This sets the maximum number of ROIs that can be passed as 16.  

The bit width for each value stored is five.  The total memory requirement for this 

subsystem is  

 
Memory = 2 3  Depth  Bit Width

              = 6 16 5 = 480 bits = 60 Bytes

  
 

 (IV.15) 

This amount of memory is very small compared with the total memory available and the 

other memory requirements of the circuit.  It is not considered in approximations.   

The re_tmp algorithm finds the values in temporary memory by using the current 

relative time window as an index, where each indexed time window has MN elements.  

The re_tmp algorithm determines the current time window index from the win_num 

signal, which is incremented after every bin set by the wind_anal algorithm.  The signal 

is reset when _ _ 1win num mem col  .  Although this has no impact on the memory 

requirements of this subsystem, this sets a key constraint on the amount of temporary 

memory required.  The memory depth must be an integer multiple of MN.   

E. TEMPORARY STORAGE AND OUTPUT CONTROL 

1. Temporary Storage Subsystem 

The two Dual-Port RAM blocks in this subsystem constitute the largest memory 

requirement for the overall circuit.  The memory must be able to store NM points while 

the circuit determines which points to downlink.  Since the temporary memory must 

continue storing additional FFT points while the energy is being calculated, additional 

space is required.   This amount is dependent on the amount of time required to compute 

the energy and downlink points of interest.  After all points of interest from a given time 

window have been read, the memory that stored the time window can be overwritten.   
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As discussed in previous sections, the timing of the circuit’s output is dependent 

on ( )F x  and the number of bins that pass the bin threshold analysis.  By setting a 

restriction that ( )F x N , a worst-case scenario can be examined where ( )F x N  

and every bin passes the bin threshold analysis.  Any additional overhead can be 

neglected, provided 16N � .  In this approximation, the minimum memory depth 

required is  

 
 

 

Divide into bins
Time Window

# 1 # 1

0 0

Read passed bins from memory

Temp Memory Depth = 1 ( ) ( )

                                   =  = 2 1

ROI ROI

x x

M N N F x M F x

MN N MN N M

 

 

   

  

 




 . (IV.16) 

It is important to note here that the ( )F x N restriction is necessary for the 

circuit to function.  If ( )F x N and every bin passes the bin threshold analysis, then it 

would take longer to read values out of temporary memory than it would to write them.  

If this behavior persisted over several time windows, the circuit would eventually run out 

of memory regardless of the depth.  If this functionality is desired, the circuit would need 

to be modified to ensure that FFT points in overlap regions between bins are not read 

more than once.   

As stated in the previous section, the temporary memory must be addressable in 

integer multiples of MN.  This can be done either by either rounding up to 3MN or 

rounding down to 2MN .  In order to round down, the ROI size must be further restricted 

such that 

 

# 1 # 1

0 0

# 1

0

( ) ( ) 2

( )
( 1)

ROI ROI

x x

ROI

x

MN F x M F x MN

MN
F x

M

 

 





  




 


. (IV.17) 

In an example where 3M  and 1024N  , the ROI size would be restricted to 

 
 
 

# 1

0

3 1024
( ) 768

3 1

ROI

x

F x




 
  (IV.18) 
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The restriction in Equation (IV.17) indicates the minimum memory requirement for this 

subsystem.  As can be inferred from the inequality, in order to achieve a memory 

requirement of MN, the total ROI size must equal zero.  As M increases, a larger fraction 

of N points can be included in the ROI because the fraction of time associated with 

overhead becomes smaller.   

Another consideration when determining Temporary Memory size is the fact that 

the memory depth of the dual-port RAM must correspond to the bit width of the signal 

used to address memory.  If w is the bit width of the memory address, then the depth of 

memory must be 2w .  If M is not a power of two, portions of Temporary Memory will be 

assigned but left unused.   

The initial SDR design set a Temporary Memory depth of 32N for each Dual-Port 

RAM, which restricts the number of FFT periods in each time window to 15M  .  As 

discussed in previous sections, the bit width of the FFT data points is 35 in this design.  

The resulting memory used is  

 
5 10

Memory = 2 Depth  Bit Width

              = 2 2 2 35 = 2240 Kbit = 280 KB

 

  
. (IV.19) 

2. Output Format Subsystem 

The performance of this subsystem is discussed in [3].  There is no delay between 

the time an output signal enters the subsystem and the time that it is written to the 

downlink FIFO buffer.  This subsystem manages the input to the downlink FIFO buffer 

using signals produced by previous subsystems.   

The only memory requirement for the Output Control Subsystem is the FIFO 

buffer that holds the output data frame while waiting for an external downlink signal.  In 

the initial design testing, downlink was only disabled for short periods of time to verify 

that the circuit would restrict the amount of data chosen for downlink when the buffer 

reached 25% of its capacity.  For this reason, the FIFO buffer depth is only 32.  For 
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maximum downlink flexibility, the end user should use all remaining memory resources 

to increase the size of this buffer.  The amount of memory used in the initial SDR design 

is  

 
Memory = Depth  Bit Width

              = 32 70 = 2240 bits = 280 Bytes




. (IV.20) 

F. GENERALIZED CIRCUIT EXPECTATIONS 

The previous sections discussed the timing and resource usage of each subsystem 

associated with the portions of the initial SDR design used for signal compression.  The 

following generalizations summarize the conclusions reached in the previous sections.  

These equations were created based on both analysis of the circuit’s design and 

observations from simulations where 1024N   and 3M  .  The expressions should hold 

valid for any configuration where 16N �  and M is a power of two.   

The delay from the first signal input to the first output indicates the overall 

latency of the design.  The delay is not calculated after the output values are written to the 

downlink FIFO buffer because the rate at which values are read out is dependent on 

conditions external to the circuit.  The delay to the time that the first header element is 

written to the downlink FIFO buffer (thdr) is expected to be 

  

Frequency Window

Time Window
#ROI 1

0

t  = FFT Latency ( 1) 2 1 1 2hdr
x

N M N F x




       



. (IV.21) 

The delay from the first signal input to the time that the last output is written to the 

downlink FIFO buffer indicates the amount of time required to generate the data frame 

for downlink (tframe).  If the number of passed bins is expressed as P, then tframe can be 

expressed as 

 
 

Transmit Passed Bins
Delay Between Successive BinsFrame Header

0

 = 3 2 ( ) 1
P

frame hdr
x

t t P M F x P


     


. (IV.22) 

By approximating the total ROI size as  ( ) / 1F x MN M  , the total amount of 

memory required for the system can be expressed as 
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      
Temp MemoryTime Window FIFO Dual-Port RAM

Memory  FFT Memory 76 bits 54 bits 2 35 bits 4

                    Pre-Downlink Storage

N N MN   



  

. (IV.23) 

G. SUMMARY 

This chapter provided a detailed analysis of the initial SDR design.  State 

transition diagrams were created to further illustrate the function of the design’s control 

algorithms.  General circuit equations were developed to create expectations for the 

circuit’s timing and memory resource requirements.  These expressions can be used as 

design equations to determine appropriate values for M, N, and ROI size based on the 

desired performance and the resources available in the target device.  The next chapter 

explains how this information can be used to make changes that improve both the 

efficiency and the functionality of the design.     
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IV. INITIAL MODIFICATIONS TO THE ORIGINAL DESIGN 

The conclusions reached in the previous chapter facilitate making changes to the 

circuit without impact to its overall functionality.  This chapter examines how the circuit 

can be adjusted to improve its portability between different FPGA devices.  It also 

introduces bandwidth and resource-conserving measures through the use of the conjugate 

symmetry property inherent in Fourier Transforms of real signals.  This chapter 

demonstrates the use of the FFTv1.0 IP with the SDR circuit, permitting the circuit’s use 

on a Virtex™-I FPGA.   

A. INCREASE COMPRESSION AND MEMORY EFFICIENCY 

This section discusses how the conjugate symmetry property for Fourier 

Transforms of real signals can be used to improve the storage and downlink efficiencies 

of this circuit.   

1. Theory 

As discussed in [9], if the input signal ( )x t  to a Fourier Transform is real then the 

output ( )X F  is conjugate symmetric as shown in the expression 

 ( ) ( ),  where ( ) ( )X F X F x t x t    . (V.1) 

Similarly, the Discrete Fourier Transform has a symmetric property.  For a real input 

sequence of  , 0,..., 1x n n N  , the corresponding output is 

    * for 0,..., 1X k X N k k N    . (V.2) 

From this expression, it is evident that if the first / 2N  points of the FFT output are 

known, the remaining output points can be reproduced.  Therefore, if the first / 2N  FFT 

output points are used for analysis, storage, and downlink selection then the remaining 

/ 2N FFT output points are redundant.  This information can be used to improve the way 

the SDR circuit stores and compresses information.   
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2. Changes Made 

The FFT IP is implemented in a black box, so this portion of the circuit cannot be 

changed.  All portions of the circuit downstream from the FFT IP need to be adjusted to 

use only half of the output points.  The most dramatic change is to the Time Windowing 

subsystem, which controls the timing of all further processing.  The Frequency 

Windowing subsystem and Temporary Memory subsystem were adjusted to 

accommodate reductions in the amount of memory required.  All other portions of the 

circuit did not require any changes because their functions are not directly dependent on 

the number of points being processed.   

a. Changes to the Time Windowing Subsystem 

As discussed in Chapter III, the Time Windowing subsystem is controlled 

by the pwr_time algorithm.  In the initial SDR design, the pwr_time algorithm worked on 

the assumption that on each clock cycle a new point was entering the subsystem to be 

processed.  As shown in Figure 16, if the last set of FFT points within a time window was 

received and the prep flag was not set then the algorithm would return to a waiting state, 

resetting all internal variables.   

This algorithm was streamlined to only calculate the sum of the energy in 

the first / 2N points.  An additional waiting state was added, identified as State Two and 

displayed in the modified state transition diagram shown in Figure 21.  State Two is 

entered after the first / 2N  points are written to the FIFO buffer.  This state retains all 

internal variables, keeping track of the number of FFT output sets that have been 

processed.  On cue from the prep flag, the algorithm transitions from State Two to State 

Three if the current FFT set is not the last one in the time window.  If the current FFT set 

is the last one in the time window, the algorithm transitions from State Two to State Five.  

Similar to State Three in the original design, State Five activates output flags and disables 

writing to the FIFO.   

Two additional states were added to reflect the fact that the circuit behaves 

differently for two clock cycles following the last FFT input to be processed within a set.  
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State Four and State Six immediately follow State Three and State Five, respectively.  

State Four ensures that writing to the FIFO is enabled for two clock cycles.  State Six 

ensures that the output is enabled.  Adding these states brings the algorithm closer to the 

Moore machine FSM model, although the output of State Three is still dependent on an 

internal delay flag.  State Seven was added to permit streamlined processing in the case 

where 1M  .  Instead of storing FFT points in the FIFO buffer, they are routed directly 

to the subsystem output, and output flags are enabled.   

 

Figure 21.   State Transition Diagram for the Modified pwr_time Algorithm. 

The algorithm must still wait for the FFT to process  1N M   points 

before it can begin outputting the summed energy vector.  As a result, there is no 

difference in the amount of time required to calculate the energy in the time window.  An 

updated timing chart, reflecting the new states is shown in Figure 22.   
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Figure 22.   Timing of Modified pwr_time Algorithm. 
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b. Changes to Frequency Windowing Subsystem 

The Frequency Windowing subsystem required only a few minor changes 

to ensure that it makes the most efficient use of memory based on the new output from 

the Time Windowing subsystem.  By modifying the restriction on ROI size so that 

( ) / 2 1F x N  , the algorithm will have time to read all stored energy points before 

the next energy vector needs to be written to memory.  In a worst-case scenario, where 

1M  , all points must be written to memory and read out by frequency bin within N 

clock cycles.  This ensures that the next time window energy vector will not overwrite 

memory that has not yet been read.  The we_time_win algorithm was adjusted to write 

only / 2N  energy points to memory.  The first point is read from memory after a write 

delay of / 2 1N  .  The time that the last read occurs should be at least one clock before 

the next energy vector is written to memory.  By restricting the ROI size so that 

( ) / 2 2F x N  , this constraint will be met.  If the user orders the frequency bins in 

such a way that the first points of the energy vector are read first, this restriction could be 

eased since there is less risk of memory overwrite.   

Adding these restrictions on circuit timing and ROI size ensured that the 

Frequency Windowing subsystem could be implemented using a RAM depth of only 

/ 2N .  This eliminated the need for the addr_hi signal, which was used to permit the 

storage of multiple time window energy vectors.  Since only one time window energy 

vector is stored at a time, the mem_col signal used to control how many energy vectors 

are written to memory was made obsolete and removed as an input to the subsystem.  The 

addr_lo signal was adjusted to use only nine bits for FFT index addressing. 

c. Changes to Temporary Memory 

As discussed in Chapter III, the required temporary memory depth is 

dependent on the amount of time required to compute the energy and downlink points of 

interest.  In the initial configuration, the temporary memory must be addressable in 

integer multiples of MN.  In an optimal memory configuration of 2MN, the total ROI size 

must be restricted as shown in Equation (IV.17). 
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As discussed in the previous section, in the modified circuit the ROI is 

restricted so that ( ) / 2 1F x N  .  This easily meets the criteria of Equation (IV.17) to 

use the optimal memory configuration of 2MN.  Since the modified circuit only needs to 

store the first / 2N points, the memory requirement is reduced to   2 / 2M N MN .   

While the original circuit needed to contend with continuous streaming 

input, the modified circuit has a delay of / 2N clock cycles before successive time 

windows are written to memory.  If the ROI size were restricted so that all of the 

information could be transmitted within / 2N  clock cycles, then the memory depth could 

be limited to / 2MN .  In order for this to occur, the ROI must be restricted to satisfy the 

inequality 

 

 

( ) ( ) / 2

( )
2 1

F x M F x N

N
F x

M

 




 


. (V.3) 

Unlike the inequality of Equation (IV.17), increasing M further restricts the permissible 

size of the ROI.  This option is explored as a possibility for further reducing memory 

requirements, but is not recommended for circuits using continuous FFT output since it 

could severely restrict the circuit’s utility to the end user.   

The we_tmp algorithm was adjusted to return to a waiting state after 

/ 2 N points are written to temporary memory, preserving an internal variable to keep 

track of how many FFT periods have been stored.  The algorithm still relies on the 

mem_col signal to determine how many FFT periods should be stored in memory.  The 

algorithm resets its high-level memory address output to zero when the number of stored 

FFT periods is equal to  _mem col M .  The re_tmp algorithm was adjusted to ensure 

that the bit widths of the memory addresses matched the new size of the RAM module in 

the Temporary Memory subsystem.  No other changes were necessary because the 

re_tmp algorithm receives its cues from other algorithms already adjusted for a 

/ 2N configuration.   
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d. Changes to Test Configuration 

The examples shown in Chapter III used a ROI with 1019...1023k  .  

Since these points are now excluded from storage and analysis new ROIs were created to 

test the performance of the circuit.  Modifications to the design were tested using a 

configuration with 1024N  , 3M  , and user-defined ROIs 0...5k   and 6...9k  .  

The input signal was also adjusted to ensure energy was available in each frequency bin.  

Additional frequencies were added to the signal described in Equation (III.5) to ensure 

the FFT would produce detectable output for  3,5,7,9k  .     

3. Update to Circuit Generalizations 

The changes made to the circuit necessitate updates to the timing and memory 

expressions.  Equation (IV.21) expresses the delay to the time that the first header 

element is written to the downlink FIFO buffer (thdr).  In the modified circuit, this value is 

expressed as 

  

Frequency Window

Time Window
#ROI 1

0

t  = FFT Latency ( 1) 2 1 1 2
2hdr

x

N
N M F x





       



 (V.4) 

There is no change to Equation (IV.22), which includes thdr in the expression.  Equation 

(IV.23) expresses the amount of memory required for the system.  In the modified circuit, 

this value is expressed as 

      

Time Window FIFO Dual-Port RAM
Temp Memory

Memory  FFT Memory 76 bits 52 bits 35 bits 2
2 2

                    Pre-Downlink Storage

N N
MN   



 


 (V.5) 

B. INTEGRATING NEW FFT IP 

As discussed in Chapter III, the initial SDR design used the FFTv4.1 IP to 

compute the FFT.  Chapter II highlighted some of the differences between the FFTv4.1 

IP and the FFTv1.0 IP.  If a Virtex™-1 FPGA is the desired target device, the circuit 

cannot use the FFTv4.1 IP.  This section addresses how the circuit must be modified to 

accommodate the FFTv1.0 IP, which is compatible with a Virtex™-1 FPGA.   
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1. Replacing FFTv4.1 

The FFT configuration used in the initial SDR design is shown in Figure 3.  The 

updated configuration is shown in Figure 23.  As discussed in Chapter II, the original 

design manually scaled the output by1/ N .  The FFTv1.0 automatically scales the output 

by this factor, so these scaling blocks were removed.  The start signal is connected to the 

vin FFTv1.0 input, indicating when the FFT should begin computing.  The real and 

imaginary input signals are connected to the appropriate input ports.  The imaginary 

portion of the input signal is set to zero outside the subsystem.   

 

Figure 23.   FFTv1.0 as Used in the SDR.   

Since the FFTv1.0 IP does not represent the e_done signal in its System Generator 

interface, the signal is simulated from the done signal by delaying all other output signals 

one clock period.  The Xk_index signal is also unavailable through the System Generator 

interface.  This signal is simulated using a counter.  The counter is reset by the done 

signal and counts from zero to 1024, incrementing each clock period.  The valid signal is 

used to control a multiplexer.  This ensures that the counter output is forwarded to the 

next subsystem if the FFT output is valid.  A constant zero is forwarded if the data is not 

valid.    
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2. Implementation Issues 

As discussed in Chapter II, the FFTv1.0 samples incoming data points at one 

quarter of the clock rate used for processing.  In the System Generator environment, this 

is controlled by setting the Simulink® system period to 0.25 in the System Generator 

module interface as discussed in [3] and shown in Figure 24.  Adjusting the sampling rate 

for the FFTv1.0 IP module changes the sampling rates of other modules within the 

design.  This causes problems with the finite state machines in the remainder of the 

circuit, which must sample input at the same frequency as the system clock rate.   

 

Figure 24.   System Generator Configuration for FFTv1.0 [After 16]. 

The workaround is to divide the circuit into two separate Simulink® designs.  

From a development standpoint, this means that the circuit must be compiled in separate 
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parts.  The two Simulink® designs can be used to generate HDL netlists that can be re-

integrated in the ISE environment.  If more than one FPGA is available in the final circuit 

configuration, it may be desirable to run the FFT computation and the remainder of the 

SDR circuit on separate FPGAs.   

The first Simulink® model for the adjusted circuit is shown in Figure 25.  The 

second Simulink® model is shown in Figure 26.  When testing in the Simulink® 

environment, the FFT model is run first.  The output of the first simulation is stored in the 

MATLAB® workspace variable FFTout as a two-dimensional matrix with four columns.  

This information is separated and reformatted using M-Code so that it can be used as 

input for the compression algorithm.  Appendix A discusses the execution of tests in the 

Simulink® environment in further detail. 

 

Figure 25.   FFTv1.0 separated from Compression Algorithm. 

3. Changes to Performance Expectations 

As discussed in Chapter II, there is a 3N  clock delay between the last output of 

one FFT period and the first output of the next FFT period.  The new pwr_time algorithm 

handles this gracefully because it already anticipates a delay between valid inputs.  The 

same is true for the we_tmp algorithm.  The expression for thdr is updated for the FFTv1.0 

IP to show that  

  

Frequency Window

Time Window
#ROI 1

0

t  = FFT Latency 4 ( 1) 2 1 1 2
2hdr

x

N
N M F x





       
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
. (V.6) 
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Figure 26.   Compression Algorithm Separated from FFT [After 3]. 
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The 3N clock delay means that the restriction on ROI size ( )F x  shown in 

Equation (V.3) can be relaxed.  Equation (V.3) indicates that all information needs to be 

transmitted within / 2N  clock cycles after the last FFT output point is written to 

temporary memory.  The additional delay means that 3N can be added to the right side of 

the inequality so that 

 

 

( ) ( ) 3.5

3.5
( )

1

F x M F x N

N
F x

M

 




 


. (V.7) 

The adjustment to the inequality means that holding only one time window in memory is 

now a feasible option, provided 6M  .  As discussed in Chapter II, the output bit width 

of the FFTv1.0 IP is less than the output bit width of the FFTv4.0 IP.  This introduces the 

potential for additional memory savings in a circuit that uses the FFTv1.0 IP.  The 

reduced memory requirement can be expressed as 

      

Temp MemoryTime Window FIFO Dual-Port RAM

Memory  FFT Memory 32 bits 32 bits 16 bits 2
2 2 2

                    Pre-Downlink Storage

N N N
M   



  

. (V.8) 

C. ADJUSTING HEADER FORMAT AND DOWNLINK CONTROL 

This section discusses changes that improve the efficiency of the initial SDR 

design’s output mechanisms.  Changes were made to the header format, and a throttling 

mechanism was added to ensure that only valid data is sent to the output.   

1. Changes to the Header Format 

As discussed in Chapter III, the initial SDR design uses a variable-length header 

to indicate the time window being transmitted, the number of ROI that passed the bin 

analysis, whether the circuit was operating in a constrained memory condition, and which 

ROI passed the bin analysis.  Each element of the header is transmitted on successive 

clock periods.  This format is shown in Figure 27.   
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Figure 27.   Initial SDR Design Header Format. 

As discussed in Chapter III, the initial SDR design transmits a 70-bit data word on 

each clock cycle.  The format of the header in the initial design is extremely inefficient in 

its use of downlink bandwidth.  The information in the header can be compressed into a 

more efficient fixed-length format.  One way to ensure the header has a fixed length is to 

restrict the number of ROI that can be used.  Setting the possible number of ROI to a 

predetermined value means that only one bit is required for each ROI to indicate whether 

it passed bin analysis or not.  This method also removes the need to transmit the number 

of ranges that passed bin analysis as a separate quantity since this could be computed by 

summing the ROI that were flagged.  A modified header format is shown in Figure 28.   

 

Figure 28.   Modified SDR Header Format. 

The size of the header was reduced to accommodate an output bit width of 32, 

which is the minimum amount required to transmit the output of the FFTv1.0 IP.  If the 

output bit width is larger, zeroes can be prepended to the header to match the output data 

format.  The format of the header was changed to pass all required information within 

two header elements.  The first element provides room for expansion, should additional 

information be required at a later time.  In its current format the first element contains a 

28-bit preamble for synchronization, followed by 16 bits used for version control.  The 

second element uses 16 bits to indicate the window number.  Although this is a small 

number for all examples used with this thesis, this slot could be used in the future to 
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communicate the time that the first FFT input was sampled for the time window.  The 

next 15 bits are flags to indicate whether the user-defined ROI passed bin analysis.  The 

last bit indicates if the circuit is operating under a memory constrained condition.    

 

Figure 29.   Modified State Transition Diagram for out_hdr Algorithm. 

These changes were implemented by modifying the out_hdr algorithm.  The new 

state transition diagram is shown in Figure 29.  In State Zero, the algorithm waits for a 

flag to indicate that all information is available to generate the header.  The algorithm 

receives the start flag, window number, range quantity, and memory flag at the same time 

and stores the values in internal variables.  As a passing ROI is read from a FIFO buffer, 

the value is evaluated using a switch statement.  The switch statement sets a bit in a 16-

bit temporary mask corresponding to the appropriate ROI.  The temporary mask is then 
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added to an ROI mask that is preserved until the header is ready to downlink.  This 

addition could be implemented using a bitwise OR.  As soon as all ROI have been 

processed, the algorithm outputs the first header element.  On the next clock cycle, the 

algorithm outputs the window number, ROI mask, and memory flag.  Finally, the 

algorithm resets all internal variables and transitions back to the waiting state.   

2. Changes to Downlink Control 

As discussed in Chapter III, the initial SDR design used an external read enable 

signal called rE_final to control when information is transmitted from the downlink FIFO 

buffer.  While this seems like a practical means of leaving downlink decisions in the 

hands of an external communications system, the initial design did not provide a means 

of signaling to the external system when information was available to be transmitted.  

Additionally, there is a one clock cycle delay between each ROI that is output from 

temporary memory.  If this delay is forwarded directly to the transmitted output then for 

each transmitted ROI, one clock cycle is wasted transmitting invalid information.   

 

Figure 30.   Modified Format Output Subsystem [After 3]. 

Rather than simply forward a data_valid signal to the output and leave decisions 

in the hands of an external circuit, internal measures were added to enforce greater 
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control over the SDR output.  Changes made to the Format Output subsystem are shown 

in Figure 30.  A multiplexer was added to transmit a constant one if the output data is 

invalid.  A finite state machine called OuputCtl was implemented in M-Code to control 

the re input signal for the downlink FIFO buffer based availability of valid information 

and the external system’s ability to receive the information.  The state transition diagram 

for this algorithm is shown in Figure 31.   

The OutputCtl algorithm disables reading from the downlink FIFO buffer until a 

header is available.  Upon receipt of the hdr_v signal, the OutputCtl algorithm transitions 

from a waiting state to a state that increments a counter variable.  In this counting state, 

reading from the FIFO buffer is still disabled.  This ensures that all potential delays 

between successive ROI do not impact the final downlink.   

 

Figure 31.   State Transition Diagram for OutputCtl Algorithm. 

After counting for 15 clock cycles, the algorithm transitions to its output state.  In 

this state, the external rE_final signal is forwarded to the FIFO re signal.  The algorithm 

remains in this state until the downlink FIFO buffer is empty.  If the hdr_v or tmp_busy 

flags are asserted, the algorithm immediately transitions to its counting state.  Otherwise, 

the algorithm transitions back to the waiting state.   
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3. Timing Analysis 

The new output format actually increases the amount of time required to generate 

the first header output (thdr).  This is because the modified out_hdr algorithm needs to 

read and process each passed bin before generating the header.  The difference is 

inconsequential because this time is then removed from the expression for tframe.  In the 

following expressions, the FFT latency is indicated by the term LFFT.  For a system using 

FFTv4.1, the expression for thdr is updated to  

  
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Time Window Header Generation
#ROI 1

0

 =  ( 1) 2 1 1 2 #Passed Bins
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For a system using FFTv1.0, the expression for thdr is updated to  

  
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The expression for tframe is updated to  

  
Delay Between Successive BinsTransmit Passed Bins

 = 2 Passed Bins #Passed Bins 1frame hdrt t M F   
 

. (V.11) 

As discussed in Chapter III, these expressions indicate the time required to write 

information to the downlink FIFO buffer.  Since reading from the FIFO buffer is directly 

dependent on an external signal, no further timing analysis is required.   

D. OPTIMAL MEMORY CONFIGURATIONS 

This chapter examines how the circuit could be changed through understanding of 

the generalizations made in Chapter III.  This section shows the effectiveness of these 

changes by demonstrating the maximum resource utilization in example configurations 

for the Virtex™-IIP and the Virtex™-I FPGA devices.   
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1. Virtex™-IIP Implementation 

The SDR design was configured using the FFTv4.1 IP with the memory 

configurations shown in Table 6. For this example, the circuit was configured with 

1024N  and 3M  .  The table shows the expected memory utilization for the SDR in 

this configuration.   

A larger size downlink FIFO was desired for this configuration, preferably the 

maximum permissible FIFO depth of 64k.  However, the maximum bit width permissible 

for this depth is 32 bits [16].  The FIFO depth was set to 1024, which permitted 

compilation.   

The total memory required should be approximately 340 kB, which constitutes 

21.5 % of the resources available on the Virtex™-IIP FPGA.  This would indicate that 

there is significant room to increase N and M if additional functionality is desired on this 

device.   

Purpose Depth Bit Width Memory Expectation 

FFTv4.1 UNK UNK 288 kB 

Time Windowing FIFO 512 76 4864 Bytes 

Freq Windowing RAM 512 52 3328 Bytes 

Temp Storage RAM 4096 35 17.5 kB 

Temp Storage RAM 4096 35 17.5 kB 

Downlink FIFO 1024 70 8960 Bytes 

Total Memory Expectation 340 kB 

Table 6.   Example Memory Expectation Using FFTv4.1 with 1024N   and 3M  . 

The circuit was generated to the HDL Net-list level using System Generator.  The 

circuit was synthesized using the Xilinx ISE Project Navigator.  The resulting resource 

estimation far exceeded the predicted amount, as shown in Table 7. The circuit uses 56 

18 kB blocks of BRAM, corresponding to 1008 kB total memory usage.  In this case, the 
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disparity between the predicted value and the one generated through synthesis does not 

prevent the circuit from being compiled.  This anomaly is explored in more detail with 

the Virtex™-I implementation.   

Resource Used Available Percent Used 

Slices 6267 9792 68% 

Flip Flops 10486 19584 53% 

4 input LUTs 9234 19584 47% 

Bonded IOBs 96 552 17% 

BRAM 56 88 63% 

MULT 18X18 56 88 63% 

GCLK 1 16 6% 

Table 7.   Resource Estimation for SDR design [From 20]. 

2. Virtex™-I Implementation 

As discussed in Chapter II, the FFTv1.0 IP using triple memory configuration 

with 1024N   uses 75% of the memory resources on a Virtex™-I FPGA.  Even with the 

memory saving measures discussed earlier in this chapter, it is not feasible to fit a 

functioning SDR design on a single Virtex™-I FPGA using the FFTv1.0 IP 

where  1024N  .  The resources required in an example where 4M   are shown in 

Error! Reference source not found. 

In order to further constrain the memory requirement, full precision was not used 

for the bin energy calculation.  In the initial SDR design, all arithmetic calculations added 

bits to the output data word to prevent overflow.  This level of precision is unnecessary 

because the signal only needs to indicate if there is enough energy to pass the threshold.  

Therefore, the data signal only needs to have enough precision for the minimum 

threshold.  If arithmetic operations result in overflow, the signal can simply be saturated 

at its maximum value.   
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Purpose Depth Bit Width Memory Expectation 

FFTv1.0 UNK UNK 12 kB 

Time Windowing FIFO 512 16 1 kB 

Freq Windowing RAM 512 16 1 kB 

Temp Storage RAM 2048 16 4 kB 

Temp Storage RAM 2048 16 4 kB 

Downlink FIFO 1024 32 4 kB 

Total Memory Expectation 26 kB 

Table 8.   Example Memory Configuration Using FFTv1.0 IP. 

If a multiple-FPGA system is available as the target device, then the design could 

be distributed between each of the devices.  As discussed in Section B, the FFTv1.0 must 

be compiled separately from the remainder of the circuit.  This neatly divides the design 

into two pieces that could each fit on its own Virtex™-I FPGA.  System Generator 

compiled the compression-only portion of the circuit, creating a Xilinx ISE project.  The 

circuit was synthesized through the Xilinx ISE project navigator.  The resulting resource 

estimation showed that the circuit required six kB of BRAM more than the expected 

value.   

In order to produce a configuration that could plausibly run the circuit was further 

divided.  Bin Analysis functions were assigned to one FPGA.  Temporary Storage and 

Downlink Control went to another FPGA, creating a three-FPGA configuration.  The new 

configuration is shown in Figure 32.   
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Figure 32.   Partitioned Compression Algorithm for a Three-FPGA Configuration 
[After 3]. 

System Generator was used to create a Xilinx ISE project for each part of the 

compression algorithm.  Both designs were synthesized using Xilinx ISE Project 
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Navigator to produce resource estimates.  The bin analysis portion is shown in Table 9. 

The temporary storage and downlink control portion is shown in Table 9. The Temporary 

Storage and Downlink Control partition met expectations, with 24 BRAM blocks used.  

At 512 bytes for each block, this means that 12kB was used, which correlates with the 

information presented in Table 10. The Temporary Storage RAM and Downlink FIFO 

should use 12kB of BRAM.   

Resource Used Available Percent Used 

Slices 859 12288 6% 

Flip Flops 344 24576 1% 

4 input LUTs 1525 24576 6% 

Bonded IOBs 91 404 22% 

BRAM 16 32 50% 

GCLK 1 4 25% 

Table 9.   Resource Estimation for Bin Analysis [From 20]. 

Resource Used Available Percent Used 

Slices 109 12288 < 1% 

Flip Flops 63 24576 < 1% 

4 input LUTs 175 24576 < 1% 

Bonded IOBs 114 404 28% 

BRAM 24 32 75% 

GCLK 1 4 25% 

Table 10.   Resource Estimation for Temporary Storage and Downlink Control  
[From 20]. 

The extra six kB memory requirement comes from the Bin Analysis portion of the 

circuit, as shown in Table 9. The Time Windowing FIFO and Frequency Windowing 
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RAM should only require one kB of memory each.  Further analysis to isolate the exact 

cause of this anomalous memory requirement is not included within this thesis work.   

E. SUMMARY 

In this chapter, the information discussed in Chapter III was used to make changes 

to the initial SDR design.  A memory and bandwidth conserving measure was 

implemented that takes advantage of the conjugate symmetry property of Fourier 

Transforms.  The FFTv4.1 IP was replaced with the FFTv1.0 IP, creating a configuration 

that can be used on a Virtex™-I FPGA.  The output format was adjusted to provide better 

cueing to an external communications system and make more efficient use of bandwidth.  

Finally, the effectiveness of these changes was demonstrated by compiling the design for 

both the Virtex™-IIP FPGA and the Virtex™-I FPGA.  The next chapter discusses 

measures that increase the fault tolerance of the SDR design, making it more suitable for 

the space environment. 

  Equation Chapter (Next) Section 1 
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V. FAULT DETECTION 

Ultimately, this SDR design is intended for the space environment.  As discussed 

in [25], this means that the circuit will be vulnerable to Single Event Upsets (SEU).  A 

SEU occurs when a high-energy particle causes a one-time bit flip, either in memory or in 

the output of a combinational circuit.  As discussed in [6], SEUs have special 

implications for FPGA devices.  If the SEU occurs on the output of combinational logic 

or in data memory then the effect is transitory.  If the SEU occurs in the FPGA 

configuration memory, the circuit configuration will change.  This may produce 

continuous errors, or may only produce errors for a specific input set depending on the 

location of the configuration fault.   

This chapter explores ways of detecting faults in the circuit.  Fault detection flags 

are communicated to the ground along with the output data.  If the fault is singular, the 

ground user may elect to discard the data.  If the fault is continuous, the user may elect to 

reload the FPGA configuration to remove the fault.  Alternatively, the SDR controller in 

space may be designed to reload the configuration after a certain number of repeated 

errors.   

A. CONSIDERATIONS 

1. SDR Considerations 

As discussed in [25], the vulnerability of a circuit to SEUs is dependent on its 

area.  Large circuits are more susceptible to SEUs than small circuits.  In implementing 

fault detection for the SDR design, the portions of the circuit requiring the largest use of 

combinational logic and memory were selected for fault detection algorithms.  As 

discussed in Chapter III, the FFT IP represents the largest use of both combinational logic 

and memory.   

As discussed in [5], Triple Modular Redundancy (TMR) presents one means of 

error detection and correction.  Three copies of the circuit make the same calculation.  
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Their results are compared by a majority voter.  If one of the solutions does not correlate 

to the other two, an error has occurred and the erroneous output is discarded.  As 

discussed in Chapter IV, neither the Virtex™-IIP nor the Virtex™-I FPGA would have 

room to accommodate two additional copies of the FFT IP.   

Snodgrass introduced the concept of Reduced Precision Redundancy (RPR) in 

[5].  If a less-precise numerical solution is acceptable, then two low-precision copies of 

the circuit could be used to generate an upper and lower bound.  If the precise solution is 

outside the bounds, an error has occurred.  In that case, the average between the upper 

and lower bound is used instead of the precise output.   

While RPR looks like a feasible means of producing a fault correction by trading 

precision for area, it would not produce significant memory savings for the FFT IP used 

in this design.  The FFT IP prevents any modification to the internal circuitry beyond the 

configuration options presented to the user.  This prevents the use of either RPR or TMR 

for low-level calculations.  As discussed in [22], the FFTv1.0 phase factor bit width is 

fixed at 16 bits.  Intermediate values are stored at this level of precision, independent of 

the input data’s precision.  The number of memory blocks required for the FFTv4.1 IP is 

specifically listed in [15], grouped by target device and configuration options.  As with 

the FFTv1.0 IP, the amount of memory required is independent of the input precision.   

For this SDR design, neither TMR nor RPR seem to be feasible options for 

detecting errors that occur within the FFT IP.  In order to work with the SDR design, 

fault detection algorithms must use only the remaining chip space shown in Chapter IV.  

A simple computation relating the FFT input to the FFT output is desired.   

2. Parseval’s Theorem 

As discussed in [9], the Discrete Fourier Transform has the inner product 

property, also known as Parseval’s Theorem where   
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This equation relates the input to the FFT directly to the output of the FFT in a way that 

is much less computationally intensive than the FFT algorithm. Because this expression 

does not produce a duplicate FFT output it cannot be used for error correction, but it can 

be used for error detection.  Both sides of the equation require N complex multiplication 

operations and N complex addition operations.   

Equation (VI.1) must be adjusted so that it can be applied in this design.  The 

input to the FFT is a real signal.  The term y[n] is replaced with x[n].  The left side of the 

expression is adjusted to  

    

 

1 1

0 0

1
2 2

0

1
2

0

[ ] [ ] [ ] [ ]

                    Re [ ] Im [ ]

                    Re [ ]

N N

n n

N

n

N

n

x n y n x n x n

x n x n

x n

 
 

 











 



 





. (VI.2) 

As discussed in Chapter II, the output of the FFT is already scaled by a factor 

of  1/ N .  The right side of the equation is adjusted to use the real and imaginary portions 

of the signal.  Then an additional scaling factor of 1/ N  is included on each side.  This 

produces an expression that can be implemented using the FFT input and output, where 
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Although Equation (VI.3) can be easily implemented in hardware, it presents a 

timing problem when used with this design.  The left side of the expression can be 

calculated before the FFT circuit has completed its computation.  As discussed in Chapter 

IV, the compression portion of the design now uses only the first / 2 N points of the FFT  
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output.  Depending on the size of the user-defined ROI, the circuit might not be able to 

complete computation of the right side of Equation (VI.3) before the header is ready for 

downlink.   

The conjugate symmetry property shown in Equation (V.1) and Equation (V.2) 

can also be used to reduce the right side of Equation (VI.3).  This is shown in the 

expression 
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This means that Equation (VI.3) can be adjusted to  

      
22

1 /2 1
2

0 0

Re [ ] Im [ ]1
Re [ ] 2

N N

n k

X k X k
x n

N N N

 

 

   
    

   
  . (VI.5) 

By using Equation (VI.5), the number of arithmetic operations required to calculate the 

right side of the expression is reduced by half.  This ensures that both sides of the 

expression can be calculated and compared in time to include error detection information 

in the header for each time window data frame.   

3. Parity Checking 

As discussed in [23], a parity bit can be used to detect corruption of data.  For 

even parity a bit is appended to the data word to ensure that the number of ones in the 

word is even.  If the number of ones in the data word is even, the parity bit will be zero.  

If the number of ones in the data word is odd, the parity bit will be one.  Wakerly shows 

that the Exclusive Or (XOR) function can be used to determine the appropriate value of 

the parity bit [23].  If an odd number of errors occur in the data word, the parity bit will 

detect that an error is present.  If the number of errors in the word is even, they will not 

be detected by a single parity bit.   
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B. MODIFICATIONS TO DESIGN 

This section discusses how the design was modified to add fault tolerance.  The 

baseline for changes is the example Virtex™-IIP configuration shown in Chapter IV.D.1, 

where 3 M  and 1024N  .  This model incorporates the changes discussed in Chapter 

IV.  The Virtex™-IIP configuration was selected because using only one chip was 

desirable to facilitate signal routing while adding new features to the design.  Parseval’s 

Theorem was used to detect errors in the FFT computation.  Parity bits are used to detect 

errors in other memory blocks within the circuit.   

1. Error Checking Using Parseval’s Theorem 

An error in the FFT computation is detected by calculating the left and right sides 

of Equation (VI.5) independently.  If the results differ by a predetermined threshold, an 

error flag for the FFT time window is forwarded to the header generation algorithm 

out_hdr.  The header was adjusted to forward error flags for the time windows.   

a. Implementation 

The FFT subsystem was adjusted to calculate the left side of Equation 

(VI.5), as shown in Figure 33.  A multiplier IP block is used to calculate  2 Re [ ]x n .  

The subsystem labeled Accum developed in [3] uses a pair of accumulators to 

continuously sum the streaming input.  This subsystem was used because of its 

demonstrated reliability.  It is possible that the accumulator subsystem could be replaced 

with a simpler configuration using only one accumulator.  The accumulator would need 

to be configured to reinitialize with the current input on reset, as discussed in [24].  This 

would permit the system to calculate the sum of continuous inputs using only one 

accumulator.   
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Figure 33.   FFT Subsystem Modified for Error Detection [After 3]. 

The system relies on timing signals based on the FFT v4.1 IP to indicate 

the beginning and end of each FFT period.  The xn_index signal corresponds to the index 

of the input points.  This value is compared to 1023 to detect the end of the current input 

period.  This value is delayed by one clock to indicate the start of the next period.  The 

circuit would need to be adjusted for the FFTv1.0 IP by using a counter to simulate the 

xn_index signal.   

The FFT subsystem scales the accumulator output by 1/ N  then delays the 

signal to align it with the FFT output.  The value  
1

2

0

Re [ ]
N

n

x n



  leaves the FFT subsystem 

as the check signal.  This signal is routed to the Time Windowing subsystem.  As 
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discussed in Chapter III, the SDR compression algorithm determines the energy in each 

FFT point by calculating      2 2
 Re [ ] / Im [ ] /X k N X k N .  This value is routed into a 

new FFT Error Detection Subsystem, as shown in Figure 34.  The e_done and p_cnt 

signals are also routed to the FFT Error Detection Subsystem for timing purposes.  As 

discussed in Chapter III, these signals indicate the start of the FFT output period and the 

current FFT output index, respectively.   

 

Figure 34.   Modification for FFT Error Detection [After 3]. 

Within the FFT Error Detection Subsystem, another copy of the 

Accumulator subsystem is used to calculate the sum of the pwr_pts signal, as shown in 

Figure 35.  The sum is scaled by a factor of two completing all calculations required for 

Equation (VI.5).  The difference between the left and right sides of the equation is 

calculated using a subtraction IP block.  The difference is compared with a positive and 

negative threshold.  If both comparisons yield a true result, then no error exists.  In any 

other case, the Error flag will be set.  The e_done signal is used to indicate the start of an 

FFT output sequence.  The p_cnt signal is used to determine when enough points have  
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been collected to calculate the sum on the right side of Equation (VI.5).  When this point 

in time is reached, the valid_prep flag is set to indicate that the Error flag will be valid on 

the next clock cycle.   

 

Figure 35.   FFT Error Detection Subsystem. 

The Error flag and valid_prep flag are passed to the ErrorFlagCtl 

algorithm.  This algorithm uses the Error flags from each FFT period within the user-

defined time window to generate an error code, indicated by the err_win signal in Figure 

34.  The length of the error code is equal to M, the number of FFT periods in each time 

window.  Each bit is a flag that indicates whether or not an error was detected within that 

FFT period.  The state transition diagram for the ErrorFlagCtl algorithm is shown in 

Figure 36.    



 79

 

Figure 36.   State Transition Diagram for the ErrorFlagCtl Algorithm. 

The error code is forwarded to the Header Generation Subsystem to be 

included in the header for each time window frame.  An additional FIFO buffer was 

added to the subsystem to store the error code until the completion of the bin energy 

analysis.  The header format was adjusted to include the error code, as shown in Figure 

37.   

Data0
Real
Imag

Header Elements

Element 0
Bits 31:4  0x’A5A5A5A
Bits 3:1    Error Code
Bits 0       0b’1

Element 1
Bits 31:16 Window #
Bits 15:1    ROI flags
Bit 0           Memory flag

 

Figure 37.   Header Format with Error Code. 

b. Testing 

A small set of tests was conducted to ensure the circuit functions as 

desired, and to determine an appropriate value for the threshold.  The initial error 
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threshold was set to 10 2 .  The FFT error checking measures were first tested with no 

additional adjustments to the circuit.  As expected, an error code of “000” was generated 

indicating that no errors were detected.   

Next, a multiplexer was inserted into the path of the FFT output 

corresponding to   Re [ ] /X k N , as shown in Figure 38.  The error injection circuit 

compares the output of a free-running counter with the constant 3000 to determine if the 

correct value will be forwarded or a constant error.  Looking at the first time window, this 

means that the first FFT period is error-free, while the second and third will contain 

errors.  The circuit failed to detect the error using the initial threshold.  When the 

threshold was lowered to 122 the expected error code of “011” was generated.  The code 

was properly forwarded to the header generation algorithm, and was included in the data 

frame sent to the downlink.   

 

Figure 38.   Error Injection Circuit for FFT Output. 

2. Memory Error Detection 

As discussed in Section A, parity can be used to detect errors in memory.  The 

most likely place for a memory error in this circuit is in the Temporary Storage 

subsystem.  This subsystem has the largest memory requirement in the circuit outside the 

FFT IP.  It is also has the longest temporal storage requirement.  As discussed in Chapter 

III and Chapter IV, information could be held for up to MN clock cycles.  For these 

reasons, the Temporary Storage Subsystem was selected to as the best location to 

implement a memory error detection algorithm.   
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a. Implementation 

As discussed in Chapter III and Chapter IV, the signals stored in the 

Temporary Memory Subsystem are 35-bit numbers when using the Virtex™-IIP 

configuration.  In order to generate parity bits for each incoming number, the circuit must 

evaluate the expression 

  XOR Bit[34], Bit[33],...Bit[1], Bit[0]P   (VI.6) 

To implement Equation (VI.6), a tree of Bit Basher blocks is placed in series with a tree 

of XOR gates, as shown in Figure 39.    

 

Figure 39.   35-bit Parity Generator. 

As discussed in [24], the Bit Basher blocks require no hardware overhead.  

They are used here as a means of re-interpreting a single multiple-bit signal as multiple 

signals with smaller bit widths.  Each input signal can only be divided four ways, so a 

tree of Bit Basher blocks is required to re-interpret a single 35-bit signal as 35 one-bit 

signals.  This method of error detection will also work with the Virtex™-I configuration, 

provided a parity generator for a 16-bit data word is used.   

The 35-bit parity generator was added to the Temporary Memory 

Subsystem to generate a one-bit parity code from the FFT point entering memory.  This is 
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shown for the real portion of the signal in Figure 40.  The parity bit is stored in a separate 

Dual-Port RAM using the same addressing signals as the Dual-Port RAM for the data 

word.  On the output from the Dual-Port RAM, a new parity bit is generated and 

compared with the one stored in memory using an XOR gate.  If the bits do not match, 

then an error has occurred.  This design is duplicated for the imaginary portion of the 

signal.   

 

Figure 40.   Modification for Memory Error Detection (After:  [3]). 

The error flags are forwarded to the Format Output Subsystem.  A finite 

state machine was created to accumulate error flags and generate an error code that is 

appended to the end of the downlink data frame.  The state transition diagram for the 

ParityFlagCtl algorithm is shown in Figure 41.  In State Zero, the algorithm waits for 

output from the Temporary Memory Subsystem.  An initial error code of three was used 

for troubleshooting purposes.   

When the tmp_busy flag is asserted, valid output from the Temporary 

Memory subsystem will be available on the next clock cycle.  The error code is shifted 

left by two bits to make room to record error flags and the algorithm transitions to State 

Two.  Errors in the real portion of the signal are recorded in the left bit.  Errors in the 

imaginary portion of the signal are recorded in the right bit.  The error code saves one 
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error from each ROI selected for transmission.  If an error is recorded, then a flag is set to 

prevent additional errors from interfering with the values stored in the error code.  When 

the algorithm detects that a new ROI is about to be read from Temporary Memory, it 

shifts the error code left by two bits to make room for the next set of flags.   

 

Figure 41.   State Transition Diagram for the ParityFlagCtl Algorithm. 

When the tmp_busy transitions to zero, all the values for the current data 

frame have been read from Temporary Memory.  The ParityFlagCtl Algorithm 

transitions to State Two and sets the par_valid flag, indicating that the error code is valid.  

On the next clock cycle, the algorithm transitions back to State Zero to await the next set 

of values from Temporary Memory.   

The ParityFlagCtl Algorithm was inserted in the Format Output 

Subsystem, as shown in Figure 42.  The logic gate used to control write enable for the  
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Downlink FIFO was adjusted so the par_valid signal would also enable writing to the 

FIFO.  An additional multiplexer was added to the FIFO input path, allowing the 

par_code signal to be added to the data frame.   

 

Figure 42.   Modification to Communicate Memory Errors [After 3]. 

As discussed in Chapter IV, the maximum number of user defined ROIs is 

set at 15.  The par_code signal is a 32-bit number, which accommodates the maximum 

number of ROIs.  The format of the signal is shown in Table 11. The code must be 

interpreted using the number of ROIs that were selected for transmission.  As discussed 

in Chapter IV, this information is included in the data frame header.    
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 15 ROI Transmitted One ROI Transmitted 

par_code[31:30] 11 00 

par_code[29:28] ROI0[real error, imag error] 00 

par_code[27:26] ROI1[real error, imag error] 00 

… … … 

par_code[3:2] ROI13[real error, imag error] 11 

par_code[1:0] ROI14[real error, imag error] ROI0[real error, imag error] 

Table 11.   Format of the par_code Signal. 

b. Testing 

The parity checking algorithms were tested using an input data set that 

was selected to ensure that two frequency bins would be selected for downlink.  On the 

first test, no errors were injected.  As expected, the output par_code signal was 4810, or 

1100002, indicating that no error was detected.  The initial error code of three was shifted 

left by two bits when each successive frequency bin was sent to the Downlink FIFO.   

On the second test the output of the imaginary Dual-Port RAM was 

multiplexed with an error injection circuit, similar to the one shown in Figure 38.  A 

constant error was injected when the free-running counter exceeded 4767 clock cycles.  

This time was selected to ensure that the second frequency bin would contain errors, but 

the not the first frequency bin.  As expected, the output par_code signal was 4910 or 

1100012, indicating that an error was detected in the imaginary portion of the second 

frequency bin.   

3. Resource Check 

The SDR circuit with error detection capability was compiled using System 

Generator to generate a Xilinx ISE project.  Xilinx ISE Project Navigator was used to 

synthesize the design.  The results of the synthesis are shown in Table 12. The table also 
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displays the increase in percentage of device resources used in comparison with the 

baseline design without an error detection capability.  As expected, the memory 

utilization only increases slightly.  The error detection algorithms require a considerable 

increase in the number of resources used for combinational logic, but the design IS still 

able to fit on a Virtex™-IIP FPGA.   

Logic  Used Avail Pct Avail Pct Increase 
Slices  9304 9792 95 % 27 % 
Flip-Flops  14925 19584 76 % 23 % 
4-input LUTs  14234 19584 72 % 25 % 
IOBs  96 552 17 % 0 % 
BRAMs  59 88 67 % 4 % 
MULT 18x18  61 88 69 % 6 % 
GCLK  1 16 6 % 0 % 

Table 12.   Virtex™-IIP Resources Required for Error Detection (From:  [20]). 

C. CONCLUSIONS 

This chapter discussed the requirements of a circuit designed for the space 

environment.  Various options for implementing fault tolerance were explored.  The use 

of Parseval’s Theorem to check for errors in the FFT computation was introduced, 

implemented, and tested.  Parity-checking algorithms were added to detect faults in the 

Temporary Memory Subsystem.  Algorithms were added to communicate errors in the 

output data frame.  The resulting design was synthesized, ensuring that the SDR design 

would still fit on a Virtex™-IIP FPGA.  The next chapter presents a summary of this 

thesis work and provides recommendations for future work.   
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VI. CONCLUSION 

This chapter presents a summary of the objectives achieved through this review of 

the initial SDR design.  Recommendations for future work are provided.     

A. CONCLUSIONS 

The methods used for Fourier Analysis were reviewed.  The timing and resource 

requirements of the FFTv4.1 and FFTv1.0 IP circuits provided by Xilinx were examined 

using a configuration with  1024N  .  The information provided in [15] and [22] was 

verified through simulations with DC input signals and synthesis using System Generator 

and the Xilinx ISE Project Navigator.   

The initial SDR design presented in [3] was examined using a configuration with 

FFT length  1024N   and the number of FFT periods per time window M set to three.  

Internal timing considerations were clarified using state transition diagrams and timing 

charts to illustrate the behavior of the circuit’s control algorithms.  General expressions 

were created regarding the circuit’s timing and resource requirements for any selection of 

N and M.  These expressions can be used as design equations to estimate appropriate 

values for N and M given a fixed amount of available memory on a target FPGA device.   

Changes were made to increase downlink efficiency, decrease latency, and 

decrease memory utilization by taking advantage of the conjugate symmetry inherent in 

the FFT algorithm.  The Format Output Subsystem was adjusted to improve signal flow 

to an external communications system.  The downlink data frame format was adjusted to 

increase efficiency.  One possible circuit configuration was presented that fits on a 

Virtex™-IIP FPGA.  An alternate configuration was provided with the circuit functions 

distributed over three interconnected Virtex™-I FPGAs.   

The circuit was made more suitable for the space environment through the 

addition of a fault detection capability.  Options for fault detection and correction were 

examined.  A fault detection method using Parseval’s Theorem was designed and its 

functionality was verified.  Parity checking algorithms were added to detect faults in 
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some of the memory banks used in the design.  The format of the downlink data frame 

was adjusted to communicate fault status to terrestrial systems.    

The changes discussed in Chapter V represent the final modifications to the 

design for this body of work.  The final configuration was saved in the Simulink® model 

SDR1024Mod8C.  Appendix A lists all associated files required for compilation, as well 

as the revision history of the design.  Wright provided a list of items that would need to 

be changed to ensure the design functions under different configuration options [3].  This 

list is updated in Appendix A.   

B. RECOMMENDATIONS 

This thesis work focused on the practical implementation of the algorithm 

documented in [3].  To supplement the recommendations listed in [3], additional work 

could be done in the following areas to improve the circuit’s capability and verify its 

reliability.   

1. Bin Overlap 

The current algorithms were written with the assumption that user-defined 

frequency bins could not overlap.  Although the circuit would have no difficulty 

processing overlapping bins, this would lead to inefficiency in the downlink since FFT 

points in the overlap region would be sent twice.  In order to correct this inefficiency, the 

bin range input to the re_tmp algorithm will need to be adjusted.  The circuit would need 

to detect if bin overlap exists and determine if both overlapping bins pass the bin 

threshold analysis.  If one or both of the overlapping bins fails the threshold analysis, the 

circuit functions normally.     

2. Pipelining 

As discussed in Chapter III, this circuit does not take advantage of the pipelining 

features available in the multipliers and adders.  The compression portion of the circuit 

uses two adders, two multipliers, and two accumulators.  Pipelining these arithmetic 

operations would lower the clock period, increasing the sample rate along with the 
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sensitivity of the circuit.  This change would require some adjustments to the timing 

algorithms.  The pwr_time algorithm and accum_ctl algorithm are the most likely to be 

affected by pipelining.  The delays inserted for timing purposes would also need to be 

adjusted to accommodate pipelining.   

3. Comprehensive Test Set 

The modifications made in this thesis work were tested using a small range of 

possible inputs and user-defined configurations.  The work documented in [3] used a 

larger range of tests.  Even these tests did not come close to testing the algorithm under 

its most stressful conditions.  The circuit needs to be tested with the user-defined ROI 

maximized over a period of time that would confirm its ability to gracefully overwrite 

obsolete memory.  Additionally, it needs to be tested with input signals that are not tuned 

to the sampling rate of the FFT.  The fault detection algorithms should be tested with a 

wider range of faults and different fault thresholds to determine an optimal configuration.  

Finally, the fault detection algorithms could be tested in a radiation environment to verify 

that they perform as designed.   

4. Improve User Interface 

The algorithm in its current form is vulnerable to user misuse through poor 

configuration choices.  The algorithm could be adjusted to detect and prevent user-

entered configurations that would cause the algorithm to crash or produce anomalous 

output through unintended memory overwrites.  Since the procedure to set up the 

configuration is complex, a user guide should be developed.  The compilation 

instructions included in Appendix A could be used as a baseline.  A graphical user 

interface could also be developed using MATLAB® to facilitate the setup process.  

Finally, some decompression algorithms for the design make use of intermediate signals 

sent to the MATLAB® workspace for troubleshooting.  Since these signals would not be 

available in the actual implementation, a user-friendly decompression algorithm using 

only the final output of the SDR circuit should be developed.   
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5. Explore Other Methods to Compute the FFT 

This thesis explored using both the FFTv4.1 IP and the FFTv1.0 IP as the means 

to compute the FFT for the SDR circuit.  While the FFTv4.1 IP is compatible with the 

Virtex™-IIP FPGA, neither of these IP circuits is compatible with the Virtex™-II FPGA.  

If the Virtex™-II FPGA is desired as the target device, the FFTv3.1 and FFTv3.2 IP 

circuits could be examined as a feasible means to compute the FFT for the SDR circuit 

[15], [22], [26], [27].   

This thesis focused on using existing IP to compute the FFT.  As discussed in 

Chapter V, this prevented the use of internal fault detection and correction methods such 

as Triple Modular Redundancy and Reduced Precision Redundancy.  If this level of fault 

tolerance is desired for this circuit, an FFT would have to be developed in the System 

Generator environment using fault-tolerant algorithms within the Cooley-Tukey 

algorithm.  An RPR version of this algorithm that could be used as a basis for an FFT 

circuit for the SDR design is demonstrated in [6].   
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APPENDIX A.  IMPLEMENTATION DETAILS 

This appendix provides lists of the files required to run the simulations discussed 

in this research.  A set of instructions for simulation and synthesis of the design is 

provided.  Additionally, the list of modules affected by changes to N and M is updated.   

A. REQUIRED FILES 

A new Simulink® model was saved with each major adjustment to the design.  

All of these files and folders used for this design are available on DVD.  The NPS CRL 

Lab Manager can be contacted for a copy of the DVD.  A list of important subdirectories 

is shown in Table 13. A list of m-files required to configure the MATLAB® environment 

for the simulation is provided in Table 14. A list of the Simulink® models representing 

different stages in development is provided in Table 15. A list of m-files required to 

implement algorithms within the m-code blocks of the initial SDR design is provided in 

Table 16. Files that replace or augment the ones used in the initial SDR design for 

follow-on models are listed in Table 17. 



 92

Sub Directory Description 

FFT_Testing Contains all files used to test the FFTv4.1 and FFTv1.0 IP blocks as 

discussed in Chapter II. 

DurkeInit Contains all model and m-code files developed for the thesis work 

documented in [3].   

DurkeInit/Mods Contains all model and m-code files modified for the work 

documented in this thesis.   

FFTdev Contains models and m-code files for an initial attempt to develop an 

FFT algorithm in the System Generator environment using IP blocks 

for elementary math operations.   

Table 13.   Important Sub Directories Available on DVD. 

File Name (.m) Description 

input_sig_gen Creates an input signal for SDR testing [3]. 

input_sig_gen2 Doubles the number of frequencies in the input signal.   

ROI_ctrl Creates ROI input to SDR design [3]. 

Test_control_testing File used to run tests discussed in [3]. 

Test_control_testing_Rev2 Modifies the input data set to focus on the first time window.  

Test_control_testing_Rev3 Increases the size of user-defined ROI.   

Test_control_testing_Rev4 Adjusts user-defined ROI and input signals to test / 2N  

configuration.   

Test_control_testing_Rev5 Reformats model I/O signals for a 2-chip implementation. 

Test_control_testing_Rev6 Reformats model I/O signals for a 3-chip implementation.   

Table 14.   M-Code files External to the SDR Design. 
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Model Name (.mdl) Description 

FFTv1Test3 Test the performance of the FFTv1.0 IP block. 

FFTv4Test Test the performance of the FFTv4.1 IP block.  

SDR_1024_point_1 Initial SDR design, described in [3] 

SDR_1024MOD2 Circuit modified for / 2N compression 

SDR_1024MOD3A Compression algorithm only.  FFT computation removed.   

Mod3_Chip1of3 FFTv1.0 computation only.  Used in conjunction with 

either SDR_1024MOD3A or SDR_1024Mod7Chip2B and 

SDR_1024Mod7Chip3B.   

SDR_1024MOD4 Adds adjustments to downlink control.   

SDR_1024MOD5 Reduces memory requirement of Time Windowing and 

Freq Windowing subsystems to minimum.   

SDR_1024MOD6 Optimal configuration for Virtex™-IIP.  All 

troubleshooting signals removed to track signal formats.   

SDR_1024MOD7Chip2B Window Analysis subsystems only.  Chip 2 of a 3-chip 

Virtex™-I configuration.   

SDR_1024Mod7Chip3B Temporary Storage, Format Output, and Downlink Control 

Subsystems.  Chip 3 of a 3-chip Virtex™-I configuration.   

SDR_1024Mod8C Added FFT error checking algorithms.  This model 

includes error injection algorithms for testing.   

Table 15.   Simulink® Model Files Used in this Thesis Work. 
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Algorithm File Name (.m) Description 

accum_ctrl accum_ctrl_3_1 Manages signals to control two accumulators. 

hdr_data_mgt hdr_data_mgt Manages signals passed to the out_hdr algorithm. 

mem_pri mem_pri Sets a flag to use more a smaller set of ROIs when 

in a restricted memory condition.   

out_hdr out_hdr Produces a header for the output data frame.  

pwr_time pwr_time_1 Manages Time Windowing subsystem signals.  

Original Design, assumes continuous FFT output.   

re_freq_win re_freq_win_1 Manages signals and addressing when reading user-

defined ROIs from a dual-port RAM. 

re_tmp re_tmp_1 Manages signals and addressing when reading 

values out of Temporary Memory.   

we_temp_fft we_temp_fft_1 Manages signals and addressing when writing FFT 

output to Temporary Memory.   

we_time_win we_time_win_1 Manages signals and addressing when writing Time 

Window subsystem output to a dual-port RAM.   

wind_anal wind_anal_2 Manages the signals associated with evaluating the 

number of ROIs that pass threshold analysis.   

Table 16.   M-Code files Used in the Initial SDR Design, as Discussed in Chapter III. 
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Algorithm File Name (.m) Description of Change 

ErrorFlagCtl ErrorFlagCtl Interprets errors detected in the FFT algorithm and 

generates an error code as discussed in Chapter V. 

out_hdr out_hdrMod1 Produces an efficient, fixed-length header.   

out_hdr out_hdrMod2 Includes the FFT error code in the header.   

OutputCtl OutputCtlMod0 Controls reading from the downlink FIFO buffer 

as discussed in Chapter IV.   

ParityFlagCtl ParityFlagCtl Saves errors detected in memory through parity 

checking algorithms and produces a parity error 

code for downlink.   

pwr_time pwr_time_MOD2 Adjusts algorithm to interpret only / 2N  points.   

re_freq_win re_freq_win_Mod1 Adjusts algorithm to interpret only / 2N  points.   

re_tmp re_tmp_Mod1 Adjusts algorithm to read only / 2N  points per 

FFT period.   

we_temp_fft we_temp_fft_Mod1 Adjusts algorithm to write only / 2N  points per 

FFT period.   

we_time_win we_time_win_Mod1 Adjusts algorithm to interpret only / 2N  points.   

wind_anal wind_anal_Mod1 Added comments to m-code for clarification.   

Table 17.   M-Code Files Added or Adjusted for Changes to the SDR Design. 

All files must be opened on a system configured for use with the appropriate 

MATLAB®, System Generator, Xilinx ISE, and ModelSim® software, as listed in 

Chapter II. Opening the design without all software correctly configured results in 

unrecoverable corruption of the model file.  Working from a set of backup files is  
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recommended until the functionality of all design tools is verified.  All required files must be 

located within the same directory to be recognized when the simulation is run [28].   

B. INSTRUCTIONS 

The following steps describe how to use the Simulink® model of the SDR design 

for testing and synthesis.  Initial versions of the Test_control_testing series of m-code 

files are designed to run MATLAB®/Simulink® tests simply by executing the file.  This 

method was not used in the development of this thesis work because it prevents the 

operator from checking the intermediate progress of the test.   

1. Examine the Simulink® Model 

Open the desired Simulink® model.  Check all m-code blocks and ensure that 

each m-file is included in the same directory as the model.   

2. Conduct Incremental Execution of the Test File 

Open the desired m-code test file.  The test files are divided into multiple cells, 

each of which can be executed independently.  The details of using cells are listed in the 

“Rapid Code Iteration Overview” section of [28].  The beginning of a cell is identified by 

a header comment in bold type.  To evaluate an individual cell, move the text cursor 

within the cell.  This highlights the cell.  Select “Cell Evaluate Current Cell,” or type 

“Ctrl+Enter” to evaluate this portion of m-code.  Execute the first four cells in the file, 

ending with the cell labeled “Input Signal Generation.”  Check the MATLAB® 

workspace to ensure that all required input variables have been assigned.  Once this is 

accomplished, the Simulink® model is ready for simulation and HDL generation.   

The test file for models configured for three-chip design provides additional cells 

to reformat the output of each simulation so that it can be used as input for the next 

simulation.  After the first four cells are executed, the simulation of the first model which 

contains the FFT IP is conducted.  Once the simulation is complete, executing the cell 

labeled “Reformat FFT Output” adjusts the simulation output to be used as input for the 

second model which contains the Windowing Algorithm subsystem and Window 
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Analysis subsystem.  Once the second simulation is complete, executing the cell labeled 

“Reformat Compression Output” adjusts the simulation output to be used as input for the 

third model, which contains the Temporary Memory subsystem, Format Output 

subsystem, and Downlink Control subsystem.   

3. Synthesis 

The process to create a FPGA configuration file from a System Generator 

Simulink® model is summarized in [3].  Specific details are provided in [10] and [11].  

For this research, the design was compiled to the HDL netlist level by selecting this 

option and clicking “Generate” in the System Generator GUI.  This creates a Xilinx ISE 

project, which can be opened using Xilinx ISE Project Navigator.   

C. CHANGING PARAMETERS 

The impact of adjusting the parameters N and M on the required depth of storage 

devices is discussed briefly in [3], which lists all storage devices and associated control 

algorithms.  This information was clarified in Chapter III, which identified that not all 

storage devices are sensitive to changes in N and M.  The new list of storage devices 

sensitive to changes in N and M is shown in Table 18. 

Storage Device  Write Control Module Read Control Module 

FIFO (Time Wind) pwr_time pwr_time 

Dual Port RAM (Freq Wind) we_time_win re_freq_win 

Dual Port RAM (Real Data) we_temp_fft re_temp 

Dual Port RAM (Imag Data) we_temp_fft re_temp 

Dual Port RAM (Real Parity) we_temp_fft re_temp 

Dual Port RAM (Imag Parity) we_temp_fft re_temp 

Table 18.   Storage Devices Sensitive to Changes in N and M [After 3].   
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In addition to the storage devices listed, the FFT error detection algorithm is 

sensitive to changes in N and M.  As discussed in [15], changing N alters the timing 

performance of the FFTv4.1 IP block.  The block would need to be retested to determine 

the latency between the first real signal input and the first FFT output point.  This 

information can be used to adjust the delay blocks used to align the error detection signal 

with FFT output, as discussed in Chapter V.  Comparison blocks used for timing in FFT 

error control algorithms are also dependent on the value of N.  Changing the value of M 

requires a manual adjustment to the ErrorFlagCtl algorithm and the out_hdr algorithm 

because the length of the error code is equal to M.   
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APPENDIX B.  ADDITIONAL APPLICATIONS 

This section classified and is bound separately.  Contact the Naval Postgraduate 

School Special Security Officer for access.   
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